
Chapter 1

Motion and Deformation

1.1 Dimension of soft robot bodies

Soft robots will move and deform. Let us formulate the motion and deformation of soft robots.
All actual soft robots have three-dimensional bodies acting in three-dimensional space. It
is natural to build three-dimensional models of soft robots. Yet when main motion and de-
formation of a soft robot is one-dimensional or two-dimensional, we build a one-dimensional
or two-dimensional model to focus on the main motion and deformation. Consequently,
we have the following models: one-dimensional model (Fig. 1.1(a)), two-dimensional model
(Fig. 1.1(b)), three-dimensional model (Fig. 1.1(c)). One-dimensional models focus on trans-
lational motion and extensional deformation in one-dimensional space. Two-dimensional
models focus on translational and rotational motion as well as extensional and shear de-
formation in two-dimensional space. Three-dimensional models focus on translational and
rotational motion as well as extensional and shear deformation in three-dimensional space.
Note that rotational motion and shear deformation appear in two- or three-dimensional mod-
els. Soft robots consisting of soft materials are referred to as soft-material robots. These three
models are applicable to soft-material robots.

When one- or two-dimensions of bodies are dominant than others, the bodies may de-
form. Soft robots with such bodies are referred to as geometrically deformable robots. We
build models focusing on dominant dimensions. Deformable linear models have one dominant
dimension, that is, the other two dimensions are negligible. Deformable linear models in two-
dimensional space (Fig. 1.1(d)) focus on bending and extensional deformations. Deformable
linear models in three-dimensional space (Fig. 1.1(e)) focus on bending, twisting, and exten-
sional deformations. Deformable planar models (Fig. 1.1(f)) have two dominant dimensions,
that is, the another dimension is negligible. Deformable planar models focus on bending and
extensional deformations in three-dimensional space.

Table 1.1 summarizes relationship between dominant dimension of soft robot bodies and
dimension of space. Elements (1, 1), (2, 2), and (3, 3) imply one-, two-, and three-dimensional
soft-material robots. Elements (1, 2) and (1, 3) correspond to deformable linear robots acting
in two- and three-dimensional space. Element (2, 3) corresponds to deformable planar robots
acting in three-dimensional space.

1.2 One-dimensional soft robot model

First, we will investigate the motion and deformation of a one-dimensional soft robot on a
one-dimensional space. A one-dimensional soft robot is given by a line segment AB shown
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Figure 1.1: Soft robot models

Table 1.1: Dimensions of soft robot bodies and space: (1, 1), (2, 2), (3, 3) imply 1D, 2D,
3D soft-material robots. (1, 2), (1, 3) correspond to deformable linear robots while (2, 3)
corresponds to deformable planar robots.
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in Fig. 1.2(a). Assume this one-dimensional soft robot moves and deforms as shown in
Fig. 1.2(b). Let uA and uB be displacements of point A and B. Assume that uA = uB

is satisfied as shown in Fig. 1.2(c). Can we conclude that this soft robot AB moves but does
not deform?
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Figure 1.2: One-dimensional soft robot

Even though uA = uB, this soft robot may deform. Let C be the center point of line
segment AB as shown in Fig. 1.3(a). Figure 1.3(b) shows the deformation where left half AC
expands while right half CB shrinks. In this deformation, displacement of point C is bigger
than displacements of A and B, that is, uC > uA = uB, as shown in Fig. 1.3(d). Figure
1.3(c) shows the deformation where left half AC shrinks while right half CB expands. In
this deformation, displacement of point C is smaller than displacements of A and B, that is,
uC < uA = uB, as shown in Fig. 1.3(e). Point C can be an arbitrary point between A and B.
So, this investigation suggests us that it is necessary to specify displacements of all points on
soft robot AB to describe its motion and deformation.

Let us describe displacements of all points on soft robot AB. Let L be the natural length
of the soft robot. Let x be the distance from point A in the natural shape. Let P(x) be point
on the soft robot at distance x, as illustrated Fig. 1.4(a). Then, point A is described as P(0)
while point B is described as P(L). Let u(x) be the displacement of point P(x), as shown in
Fig. 1.4(b). Then, the motion and deformation of this soft robot can be specified by function
u(x), where x ∈ [ 0, L ], as shown in Fig. 1.4(c).

Let P(x) and P(x+h) be two neighboring points on a one-dimensional soft robot, where h
is the infinitesimal distance between the two points in its natural state. Since displacements

A BC

(a) center point C

A B

uA uB

C

uC

(b) left half expands

A B

uA uB

C

uC

(c) left half shrinks

A B

uBuA

uC

C

u

(d) displacements

A B

uBuA
uC

C

u

(e) displacements

Figure 1.3: Deformation of one-dimensional soft robot
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Figure 1.4: Displacement function of one-dimensional soft robot

of P(x) and P(x + h) are u(x) and u(x + h), distance between the two points in its moved
and deformed state is given by u(x + h) − u(x). Thus, extensional strain at point P(x) is
described as

ε =
u(x+ h)− u(x)

h
=

du

dx
(1.2.1)

Note that extensional strain du/dx is positive/negative when the soft robot extends/shrinks
around point P(x). Consequently, displacement function u(x) is increasing/decreasing at x
when the soft robot extends/shrinks around point P(x).

1.3 Two-dimensional soft robot model

Let us investigate the motion and deformation of a two-dimensional soft robot on a two-
dimensional space. A two-dimensional soft robot is given by a two-dimensional region S at its
natural state (Fig. 1.5(a)). Let P(x, y) be an arbitrary point in the soft robot, where (x, y) ∈
S. Assume this two-dimensional soft robot moves and deforms (Fig. 1.5(b)). Displacement
of point P(x, y) is then given by a two-dimensional vector:

u(x, y) =

[
u(x, y)
v(x, y)

]
(1.3.1)

The motion and deformation of a two-dimensional soft robot can be specified by a vector
function u(x, y), that is, by its two components u(x, y) and v(x, y).

Two-dimensional soft robots perform translational motion, rotational motion, and de-
formation. Let us describe the deformation of a two-dimensional soft robot using partial
derivatives ux = ∂u/∂x, uy = ∂u/∂y, vx = ∂v/∂x, and vy = ∂v/∂y. Translational motion of
a two-dimensional soft robot does not affect these partial derivatives since any translational
motion yields constant displacement components over region S. In other words, these partial
derivatives are independent of translational motion while depend on rotational motion and
deformation.

Assume that an infinitesimal square of its length δ (Fig. 1.6(a)) at point P(x, y) deforms
and rotates, resulting a parallelogram (Fig. 1.6(b)). Relative displacements of Q and R with
respect to P are given by

u(x+ δ, y)− u(x, y) =
∂u

∂x
(x, y) δ

u(x, y + δ)− u(x, y) =
∂u

∂y
(x, y) δ
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Figure 1.5: Displacement function of two-dimensional soft robot
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Figure 1.6: Deformation and rotation of small square region
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Figure 1.7: Extensions, shear deformation, and rotation
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Thus, normalized displacements of Q and R with respect to P are described as follows:

u(x+ δ, y)− u(x, y)

δ
=


∂u

∂x
∂u

∂y

 (1.3.2)

u(x, y + δ)− u(x, y)

δ
=


∂v

∂x
∂v

∂y

 (1.3.3)

Deformation of a two-dimensional soft robot is classified into extension along x-axis (Fig. 1.7(a)),
extension along y-axis (Fig. 1.7(b)), and shear deformation (Fig. 1.7(c)). Additionally, rota-
tional motion (Fig. 1.7(d)) affects the partial derivatives. Comparing the above equations
and Fig. 1.7, we have

∂u

∂x
= extension along x-axis,

∂v

∂y
= extension along y-axis

∂v

∂x
= shear + rotation,

∂u

∂y
= shear − rotation

Let εxx and εyy be normal strain components along x- and y-axes at point P, and εxy be
shear strain at point P, we have

εxx =
∂u

∂x
, εyy =

∂v

∂y
, 2εxy =

∂u

∂y
+

∂v

∂x
(1.3.4)

which are referred to as Cauchy strain components, or simply strain components. Let us
define

ε
△
=

 εxx
εyy
2εxy

 (1.3.5)

which is referred to as a pseudo strain vector or simply strain vector. This strain vector
describes the deformation of a soft robot at an arbitrary point P.

1.4 Three-dimensional soft robot model

Let us investigate the motion and deformation of a three-dimensional soft robot in a three-
dimensional space. A three-dimensional soft robot is given by a three-dimensional region V
at its natural state (Fig. 1.8(a)). Let P(x, y, z) be an arbitrary point in the soft robot, where
(x, y, z) ∈ V. Assume this three-dimensional soft robot moves and deforms (Fig. 1.8(b)).
Displacement of point P(x, y, z) is then given by a three-dimensional vector:

u(x, y, z) =

 u(x, y, z)
v(x, y, z)
w(x, y, z)

 (1.4.1)

The motion and deformation of a three-dimensional soft robot can be specified by a vector
function u(x, y, z), that is, by its three components u(x, y, z), v(x, y, z), and w(x, y, z).
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Figure 1.8: Displacement function of three-dimensional soft robot
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Figure 1.9: Deformation and rotation of small cube region

Assume that an infinitesimal cube of its length δ (Fig. 1.9(a)) at point P(x, y, z) deforms
and rotates, resulting a parallelepiped (Fig. 1.9(b)). Then, we derive the following equations:

∂u

∂x
= extension along x-axis

∂v

∂y
= extension along y-axis

∂w

∂z
= extension along z-axis

∂w

∂y
= shear in yz-plane + rotation in yz-plane

∂v

∂z
= shear in yz-plane − rotation in yz-plane

∂u

∂z
= shear in zx-plane + rotation in zx-plane

∂w

∂x
= shear in zx-plane − rotation in zx-plane

∂v

∂x
= shear in xy-plane + rotation in xy-plane

∂u

∂y
= shear in xy-plane − rotation in xy-plane

Let εxx, εyy, and εzz be normal strain components along x-, y-, and z-axes at point P whereas
εyz, εzx, and εxy, be shear strain components over yz-, zx-, and xy-planes at point P, we
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have

εxx =
∂u

∂x
, εyy =

∂v

∂y
, εzz =

∂w

∂z
,

2εyz =
∂v

∂z
+

∂w

∂y
, 2εzx =

∂w

∂x
+

∂u

∂z
, 2εxy =

∂u

∂y
+

∂v

∂x
(1.4.2)

which are referred to as Cauchy strain components, or simply strain components. Let us
define the following strain vector:

ε =


εxx
εyy
εzz
2εyz
2εzx
2εxy

 (1.4.3)

The upper three components correspond to normal deformation while the lower three denote
shear deformation.

1.5 Strain potential energy

Soft robot deformation yields strain potential energy. We formulate strain potential energy
of soft robots based on strain potential energy density.

Let us formulate the strain potential energy of a one-dimensional soft robot. Let E be
Young’s modulus of the robot material. Recalling that extensional strain is given by ε, we
find that the strain energy density at point P(x) is formulated as follows:

1

2
Eε2 (1.5.1)

The above quantity has the dimension of energy/volume = N/m2. Let A be the cross-
sectional area of the robot at point P(x). Volume element at point P(x) is then described
as

A dx (1.5.2)

Integrating the product of the energy density and the volume element over one-dimensional
region [ 0, L ] yields strain potential energy. Consequently, strain potential energy stored in
this one-dimensional soft robot is formulated as follows:

U =

∫ L

0

1

2
Eε2A dx =

∫ L

0

1

2
EA

(
∂u

∂x

)2

dx (1.5.3)

Note that E and A may depend on x.
Let us formulate the strain potential energy of a two-dimensional soft robot. Recall

that the deformation of a robot body is specified by three-dimensional vector ε = [ εxx, εyy,
2εxy ]

⊤. Assuming that the robot material shows linear isotropic elasticity (see Section 7.1
for details), the strain energy density at point P(x, y) is formulated as follows:

1

2
ε⊤(λIλ + µIµ)ε (1.5.4)
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where λ and µ are Lamé’s constants and

Iλ =

 1 1
1 1

 , Iµ =

 2
2

1

 (1.5.5)

Lamé’s constants λ and µ are specific to robot material, and are related to Young’s modulus
E and Poisson’s ratio ν by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(1.5.6)

Note that tensile test provides the values of Young’s modulus E and Poisson’s ratio ν, directly
yielding the values of Lamé’s constants λ and µ by the above equations.

Let h be the thickness of the robot at point P(x, y). Volume element at point P(x, y) is
then described as

h dS = h dx dy (1.5.7)

Integrating the product of the energy density and the volume element over two-dimensional
region S yields strain potential energy. Consequently, strain potential energy stored in this
two-dimensional soft robot is formulated as follows:

U =

∫
S

1

2
ε⊤(λIλ + µIµ)ε h dS (1.5.8)

Note that λ, µ, and h may depend on (x, y).
Let us formulate the strain potential energy of a three-dimensional soft robot. Recall

that the deformation of a robot body is specified by six-dimensional vector ε = [ εxx, εyy,
εzz, 2εyz, 2εzx, 2εxy ]

⊤. Assuming that the robot material shows linear isotropic elasticity
(see Section 7.1 for details), the strain energy density at point P(x, y, z) is formulated as
follows:

1

2
ε⊤(λIλ + µIµ)ε (1.5.9)

where λ and µ are Lamé’s constants and

Iλ =


1 1 1
1 1 1
1 1 1

 , Iµ =


2

2
2

1
1

1

 (1.5.10)

Volume element at point P(x, y, z) is described as

dV = dx dy dz (1.5.11)

Integrating the product of the energy density and the volume element over three-dimensional
region V yields strain potential energy. Consequently, strain potential energy stored in this
three-dimensional soft robot is formulated as follows:

U =

∫
V

1

2
ε⊤(λIλ + µIµ)ε dV (1.5.12)

Note that λ and µ may depend on (x, y, z).
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1.6 Kinetic energy

Soft robot motion yields kinetic energy. We formulate kinetic energy of soft robots based on
kinetic energy density.

Let us formulate the kinetic energy of a one-dimensional soft robot. Let ρ be density of
the robot material. Recall that velocity at point P(x) is given by u̇ = ∂u/∂t. Then, kinetic
energy density at point P(x) is formulated as follows:

1

2
ρ u̇2 (1.6.1)

The above quantity has the dimension of energy/volume. Integrating the product of the
kinetic energy density and the volume element over one-dimensional region [ 0, L ] yields
kinetic energy. Consequently, kinetic energy of this one-dimensional soft robot is formulated
as follows:

T =

∫ L

0

1

2
ρ u̇2 A dx =

∫ L

0

1

2
ρA

(
∂u

∂t

)2

dx (1.6.2)

Note that ρ and A may depend on x.
Let us formulate the kinetic energy of a two-dimensional soft robot. Velocity vector at

point P(x, y) is given by u̇ = [ u̇, v̇ ]⊤. Kinetic energy density is then formulated as follows:

1

2
ρ u̇⊤u̇ =

1

2
ρ(u̇2 + v̇2) (1.6.3)

Integrating the product of the energy density and the volume element over two-dimensional
region S yields kinetic energy. Consequently, kinetic energy of this two-dimensional soft
robot is formulated as follows:

T =

∫
S

1

2
ρ u̇⊤u̇ h dS (1.6.4)

Note that ρ and h may depend on (x, y).
Let us formulate the kinetic energy of a three-dimensional soft robot. Velocity vector at

point at point P(x, y, z) is given by u̇ = [ u̇, v̇, ẇ ]⊤. Kinetic energy density then is formulated
as follows:

1

2
ρ u̇⊤u̇ =

1

2
ρ(u̇2 + v̇2 + ẇ2) (1.6.5)

Integrating the product of the energy density and the volume element over three-dimensional
region V yields kinetic energy. Consequently, kinetic energy of this three-dimensional soft
robot is formulated as follows:

T =

∫
V

1

2
ρ u̇⊤u̇ dV (1.6.6)

Note that density ρ may depend on (x, y, z).

Problems

1. Gravitational force acts to a two-dimensional soft robot along y-axis in its negative
direction. Let g be gravitational acceleration. Show that the gravitational potential
energy.is formulated as

Ugrav =

∫
S

ρgy h dS
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Gravitational force acts to a three-dimensional soft robot along z-axis in its negative
direction. Show that the gravitational potential energy.is formulated as

Ugrav =

∫
V

ρgz dV
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