Chapter 2

Finite Element Approximation

2.1 Piecewise linear approximation

One-dimensional piecewise linear approximation Let us approximate one-dimensional function $f(x)$ over region $\mathrm{P}_{i} \mathrm{P}_{j}$ in one-dimensional space. The function takes values f_{i}, f_{j} at points $\mathrm{P}_{i}, \mathrm{P}_{j}$. Let x_{i}, x_{j} be coordinates of points $\mathrm{P}_{i}, \mathrm{P}_{j}$. Let P be any point of which coordinate is given by x. Let us introduce the following two functions

$$
\begin{align*}
& N_{i, j}(x)=\frac{\mathrm{PP}_{j}}{\mathrm{P}_{i} \mathrm{P}_{j}}=\frac{x_{j}-x}{x_{j}-x_{i}} \tag{2.1.1a}\\
& N_{j, i}(x)=\frac{\mathrm{P}_{i} \mathrm{P}}{\mathrm{P}_{i} \mathrm{P}_{j}}=\frac{x-x_{i}}{x_{j}-x_{i}} \tag{2.1.1b}
\end{align*}
$$

Noting that

$$
N_{i, j}(x)=\left\{\begin{array}{ll}
1 & x=x_{i} \\
0 & x=x_{j}
\end{array}, \quad N_{j, i}(x)= \begin{cases}0 & x=x_{i} \\
1 & x=x_{j}\end{cases}\right.
$$

linear approximation of function $f(x)$ over region $\mathrm{P}_{i} \mathrm{P}_{j}$ is described as follows:

$$
\begin{equation*}
L_{i, j}(x)=f_{i} N_{i, j}(x)+f_{j} N_{j, i}(x) . \tag{2.1.2}
\end{equation*}
$$

This function is linear since both $N_{i, j}(x)$ and $N_{j, i}(x)$ are linear. Also, this function satisfies

$$
\begin{aligned}
& L_{i, j}\left(x_{i}\right)=f_{i} N_{i, j}\left(x_{i}\right)+f_{j} N_{j, i}\left(x_{i}\right)=f_{i} \\
& L_{i, j}\left(x_{j}\right)=f_{i} N_{i, j}\left(x_{j}\right)+f_{j} N_{j, i}\left(x_{j}\right)=f_{j}
\end{aligned}
$$

concluding that function $L_{i, j}(x)$ provides one-dimensional approximation over $\mathrm{P}_{i} \mathrm{P}_{j}$.

Two-dimensional piecewise linear approximation Let us approximate two-dimensional functoin $f(x, y)$ over triangle region $\Delta \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$ in two-dimensional space. The function takes values f_{i}, f_{j}, f_{k} at points $\mathrm{P}_{i}, \mathrm{P}_{j}, \mathrm{P}_{k}$. Let $\left(x_{i}, y_{i}\right)$ be coordinates of point $\mathrm{P}_{i},\left(x_{j}, y_{j}\right)$ be coordinates of point P_{j}, and $\left(x_{k}, y_{k}\right)$ be coordinates of point P_{k}. Let $\mathrm{P}(x, y)$ be any point of
which coordinate is given by (x, y). Let us introduce the following three functions

$$
\begin{align*}
& N_{i, j, k}(x, y)=\frac{\triangle \mathrm{PP}_{j} \mathrm{P}_{k}}{\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}}=\frac{\left(y_{j}-y_{k}\right) x-\left(x_{j}-x_{k}\right) y+\left(x_{j} y_{k}-x_{k} y_{j}\right)}{2 \triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}} \tag{2.1.3a}\\
& N_{j, k, i}(x, y)=\frac{\Delta \mathrm{P}_{i} \mathrm{PP}_{k}}{\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}}=\frac{\left(y_{k}-y_{i}\right) x-\left(x_{k}-x_{i}\right) y+\left(x_{k} y_{i}-x_{i} y_{k}\right)}{2 \triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}} \tag{2.1.3b}\\
& N_{k, i, j}(x, y)=\frac{\Delta \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}}{\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}}=\frac{\left(y_{i}-y_{j}\right) x-\left(x_{i}-x_{j}\right) y+\left(x_{i} y_{j}-x_{j} y_{i}\right)}{2 \triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}} \tag{2.1.3c}
\end{align*}
$$

where

$$
2 \triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}=\left(x_{i} y_{j}-x_{j} y_{i}\right)+\left(x_{j} y_{k}-x_{k} y_{j}\right)+\left(x_{k} y_{i}-x_{i} y_{k}\right) .
$$

Noting that

$$
\begin{aligned}
& N_{i, j, k}(x, y)= \begin{cases}1 & \text { at } \mathrm{P}_{i} \\
0 & \text { at } \mathrm{P}_{j}, \mathrm{P}_{k}\end{cases} \\
& N_{j, k, i}(x, y)= \begin{cases}1 & \text { at } \mathrm{P}_{j} \\
0 & \text { at } \mathrm{P}_{k}, \mathrm{P}_{i}\end{cases} \\
& N_{k, i, j}(x, y)= \begin{cases}1 & \text { at } \mathrm{P}_{k} \\
0 & \text { at } \mathrm{P}_{i}, \mathrm{P}_{j}\end{cases}
\end{aligned}
$$

linear approximation of $f(x, y)$ over region $\Delta \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$ is described as follows:

$$
\begin{equation*}
L_{i, j, k}(x, y)=f_{i} N_{i, j, k}(x, y)+f_{j} N_{j, k, i}(x, y)+f_{k} N_{k, i, j}(x, y) \tag{2.1.4}
\end{equation*}
$$

This function is linear since $N_{i, j, k}(x, y), N_{j, k, i}(x, y)$, and $N_{k, i, j}(x, y)$ are linear. Also, this function satisfies

$$
L_{i, j, k}\left(x_{i}, y_{i}\right)=f_{i}, \quad L_{i, j, k}\left(x_{j}, y_{j}\right)=f_{j}, \quad L_{i, j, k}\left(x_{k}, y_{k}\right)=f_{k}
$$

concluding that function $L_{i, j, k}(x, y)$ provides two-dimensional approximation over triangle region $\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$.

Three-dimensional piecewise linear approximation Let us approximate three-dimensional function $f(x, y, z)$ over tetrahedron region $\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$ in three-dimensional space. The function takes values $f_{i}, f_{j}, f_{k}, f_{l}$ at points $\mathrm{P}_{i}, \mathrm{P}_{j}, \mathrm{P}_{k}, \mathrm{P}_{l}$. Let $\left(x_{i}, y_{i}, z_{i}\right)$ be coordinates of point $\mathrm{P}_{i},\left(x_{j}, y_{j}, z_{j}\right)$ be coordinates of point $\mathrm{P}_{j},\left(x_{k}, y_{k}, z_{k}\right)$ be coordinates of point P_{k}, and $\left(x_{l}, y_{l}, z_{l}\right)$ be coordinates of point P_{l}. Let $\mathrm{P}(x, y, z)$ be any point of which coordinate is given by (x, y, z). Let us introduce the following four functions

$$
\begin{align*}
& N_{i, j, k, l}(x, y, z)=\frac{\diamond \mathrm{PP}_{j} \mathrm{P}_{k} \mathrm{P}_{l}}{\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}} \tag{2.1.5a}\\
& N_{j, k, l, i}(x, y, z)=\frac{\diamond \mathrm{P}_{i} \mathrm{PP}_{k} \mathrm{P}_{l}}{\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}} \tag{2.1.5b}\\
& N_{k, l, i, j}(x, y, z)=\frac{\diamond \mathrm{P}_{i} \mathrm{P}_{i} \mathrm{PP}_{l}}{\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}} \tag{2.1.5c}\\
& N_{l, i, j, k}(x, y, z)=\frac{\diamond \mathrm{P}_{i} \mathrm{P}_{i} \mathrm{P}_{k} \mathrm{P}}{\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}} \tag{2.1.5d}
\end{align*}
$$

Then, linear approximation of $f(x, y, z)$ over region $\forall \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$ is described as follows:

$$
L_{i, j, k, l}(x, y, z)=f_{i} N_{i, j, k, l}(x, y, z)+f_{j} N_{j, k, l, i}(x, y, z)+f_{k} N_{k, l, i, j}(x, y, z)+f_{l} N_{l, i, j, k}(x, y, z)
$$

This function $L_{i, j, k, l}(x, y, z)$ provides three-dimensional approximation over tetrahedron region $\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$.

2.2 One-dimensional finite element approximation

Strain potential and kinetic energies are formulated as integral forms over one-, two-, or three-dimensional regions. It is difficult or impossible to analytically calculate such integrals. Finite element approximation provides methods to calculate the integrals numerically. Finite element approximation employs divide-and-conquer approach, which is outlined as follows:

$$
\begin{array}{ll}
\text { Step 1 } & \text { Obtain integral form with respect to unknown functions. } \\
\text { Step 2 } & \text { Divide the integral into a finite number of integrals over small regions. } \\
\text { Step 3 } & \text { Approximate unknown functions to calculate integrals over small regions. } \\
\text { Step 4 } & \text { Sum up the calculated integrals over small regions. }
\end{array}
$$

Recall that strain potential energy of a one-dimensional soft robot is given by eq. (1.5.3), that is:

$$
\begin{equation*}
U=\int_{0}^{L} \frac{1}{2} E \varepsilon^{2} A \mathrm{~d} x=\int_{0}^{L} \frac{1}{2} E A\left(\frac{\partial u}{\partial x}\right)^{2} \mathrm{~d} x \tag{2.2.1}
\end{equation*}
$$

This integral U includes one unknown function $u(x)$, which should be obtained. The above integral over region $[0, L]$ can be divided into, for example, integrals over four small regions:

$$
\int_{0}^{L}=\int_{x_{1}}^{x_{2}}+\int_{x_{2}}^{x_{3}}+\int_{x_{3}}^{x_{4}}+\int_{x_{4}}^{x_{5}}
$$

Applying piecewise linear approximation, we analytically or numerically calculate individual integrals over small regions, resulting that we can obtain integral U.

Finite element approximation of strain potential energy Let us detail the above procedure. Divide region $[0, L]$ into a finite number of small regions. Here we divide the region into four equal regions. Width of the small regions is $h=L / 4$. End points of small regions are referred to as nodal points. Here we have five nodal points. Let us describe the nodal points as $x_{1}=0, x_{2}=h, x_{3}=2 h, \cdots, x_{5}=L$. Dividing integral interval [$0, L$] into small regions, we have

$$
\begin{equation*}
U=\int_{x_{1}}^{x_{2}} \frac{1}{2} E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x+\int_{x_{2}}^{x_{3}} \frac{1}{2} E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x+\cdots+\int_{x_{4}}^{x_{5}} \frac{1}{2} E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x \tag{2.2.2}
\end{equation*}
$$

We apply piecewise linear approximation (eq. (2.1.2)) to function $u(x)$ over small region [x_{i}, $\left.x_{j}\right]$. Piecewise linear approximation of the function is described as follows:

$$
\begin{equation*}
u(x)=u_{i} N_{i, j}(x)+u_{j} N_{j, i}(x), \quad x \in\left[x_{i}, x_{j}\right] \tag{2.2.3}
\end{equation*}
$$

where u_{i}, u_{j} represent displacements at nodal points $\mathrm{P}\left(x_{i}\right), \mathrm{P}\left(x_{j}\right)$. Through this approximation, function $u(x)$ can be described by five parameters $u_{1}, u_{2}, \cdots, u_{5}$.

Let us substitute the above piecewise linear approximation into individual integrals over small regions. For sake of simplicity, assume that Young's modulus E and cross-sectional
area A are constants. Substituting piecewise linear approximation given in eq. (2.2.3) into integral over small region $\left[x_{i}, x_{j}\right]$, we have

$$
\int_{x_{i}}^{x_{j}} \frac{1}{2} E A\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x=\frac{1}{2}\left[\begin{array}{ll}
u_{i} & u_{j}
\end{array}\right] \frac{E A}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
u_{i} \\
u_{j}
\end{array}\right]
$$

(see Problem 5 in Chapter 2). Consequently, we have

$$
\begin{aligned}
U & =\frac{1}{2}\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] \frac{E A}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& +\frac{1}{2}\left[\begin{array}{ll}
u_{2} & u_{3}
\end{array}\right] \frac{E A}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right]+\cdots \\
& +\frac{1}{2}\left[\begin{array}{ll}
u_{4} & u_{5}
\end{array}\right] \frac{E A}{h}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{4} \\
u_{5}
\end{array}\right]
\end{aligned}
$$

which directly yields

$$
U=\frac{1}{2}\left[\begin{array}{lllll}
u_{1} & u_{2} & u_{3} & u_{4} & u_{5}
\end{array}\right] \frac{E A}{h}\left[\begin{array}{ccccc}
1 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right]
$$

Introducing nodal displacement vector

$$
\boldsymbol{u}_{\mathrm{N}}=\left[\begin{array}{l}
u_{1} \tag{2.2.4}\\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5}
\end{array}\right]
$$

and stiffness matrix

$$
K=\frac{E A}{h}\left[\begin{array}{ccccc}
1 & -1 & & & \tag{2.2.5}\\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 1
\end{array}\right]
$$

strain potential energy is described by the following quadratic form:

$$
\begin{equation*}
U=\frac{1}{2} \boldsymbol{u}_{\mathrm{N}}^{\top} K \boldsymbol{u}_{\mathrm{N}} . \tag{2.2.6}
\end{equation*}
$$

Note that K is a band matrix.
Let us calculate strain potential energy of a one-dimensional soft robot with non-uniform cross-sectional area. Let function $A(x)$ denote the cross-sectional area at $\mathrm{P}(x)$. Assume that Young's modulus E is constant. Recalling that $\mathrm{d} u / \mathrm{d} x$ takes a constant value $\left(-u_{i}+u_{j}\right) / h$ in small region $\left[x_{i}, x_{j}\right.$], strain potential energy over the region is given as

$$
\begin{aligned}
& \int_{x_{i}}^{x_{j}} \frac{1}{2} E A(x)\left(\frac{\mathrm{d} u}{\mathrm{~d} x}\right)^{2} \mathrm{~d} x=\frac{1}{2} E\left(\frac{-u_{i}+u_{j}}{h}\right)^{2} \int_{x_{i}}^{x_{j}} A(x) \mathrm{d} x \\
= & \frac{1}{2}\left[\begin{array}{ll}
u_{i} & u_{j}
\end{array}\right] \frac{E}{h^{2}}\left[\begin{array}{rr}
V_{i, j} & -V_{i, j} \\
-V_{i, j} & V_{i, j}
\end{array}\right]\left[\begin{array}{c}
u_{i} \\
u_{j}
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{equation*}
V_{i, j}=\int_{x_{i}}^{x_{j}} A(x) \mathrm{d} x \tag{2.2.7}
\end{equation*}
$$

represents the volume of the three-dimensional region specified by small region $\left[x_{i}, x_{j}\right]$. Thus, when region [$0, L$] is divided into four small regions, stiffness matrix is described as follows:

$$
K=\frac{E}{h^{2}}\left[\begin{array}{ccccc}
V_{1,2} & -V_{1,2} & & & \tag{2.2.8}\\
-V_{1,2} & V_{1,2}+V_{2,3} & -V_{2,3} & & \\
& -V_{2,3} & V_{2,3}+V_{3,4} & -V_{3,4} & \\
& & -V_{3,4} & V_{3,4}+V_{4,5} & -V_{4,5} \\
& & & -V_{4,5} & V_{4,5}
\end{array}\right]
$$

This matrix K is also a band matrix.
Let us reformulate the above calculation. Assume again that Young's modulus E and cross-sectional area A are constants. Potential energy stored in region $\left[x_{i}, x_{j}\right]$ is given by

$$
U_{i, j}=\frac{1}{2}\left[\begin{array}{ll}
x_{i} & x_{j}
\end{array}\right] K_{i, j}\left[\begin{array}{c}
x_{i} \tag{2.2.9}\\
x_{j}
\end{array}\right]
$$

where

$$
K_{i, j}=\frac{E A}{h}\left[\begin{array}{cc}
1 & -1 \tag{2.2.10}\\
-1 & 1
\end{array}\right]
$$

We obtain stiffness matrix K (eq.(2.2.5)) by synthesizing matrices $K_{1,2}, K_{2,3}, K_{3,4}$, and $K_{4,5}$. Let us introduce operator \oplus to describe this synthesizing:

$$
\begin{equation*}
K=K_{1,2} \oplus K_{2,3} \oplus K_{3,4} \oplus K_{4,5} \tag{2.2.11}
\end{equation*}
$$

This equation implies that summing up all contributions of $K_{1,2}$ through $K_{4,5}$ yields stiffness matrix K. Note that
$(1,1)$-th element of $K_{i, j}$ contributes to (i, i)-th element of K,
$(1,2)$-th element of $K_{i, j}$ contributes to (i, j)-th element of K,
$(2,1)$-th element of $K_{i, j}$ contributes to (j, i)-th element of K,
$(2,2)$-th element of $K_{i, j}$ contributes to (j, j)-th element of K.
We simply describe these contributions as
$(1,2) \times(1,2)$ elements of $K_{i, j}$ contribute to $(i, j) \times(i, j)$ elements of K.
Namely, operator \times denotes direct product: $(1,2) \times(1,2) \operatorname{implies}(1,1),(1,2),(2,1),(2,2)$ while $(i, j) \times(i, j)$ implies $(i, i),(i, j),(j, i),(j, j)$.

Finite element approximation of kinetic energy Let us calculate kinetic energy of a one-dimensional soft robot given by eq. (1.6.2), that is:

$$
\begin{equation*}
T=\int_{0}^{L} \frac{1}{2} \rho A\left(\frac{\partial u}{\partial t}\right)^{2} \mathrm{~d} x=\int_{0}^{L} \frac{1}{2} \rho A \dot{u}^{2} \mathrm{~d} x \tag{2.2.12}
\end{equation*}
$$

For sake of simplicity, assume that density ρ and cross-sectional area A are constants. Dividing integral region $[0, L]$ into four equal regions, we have

$$
\begin{equation*}
T=\int_{x_{1}}^{x_{2}} \frac{1}{2} \rho A \dot{u}^{2} \mathrm{~d} x+\int_{x_{2}}^{x_{3}} \frac{1}{2} \rho A \dot{u}^{2} \mathrm{~d} x+\cdots+\int_{x_{4}}^{x_{5}} \frac{1}{2} \rho A \dot{u}^{2} \mathrm{~d} x \tag{2.2.13}
\end{equation*}
$$

Piecewise linear approximation of function $u(x, t)$ over small region $\left[x_{i}, x_{j}\right]$ is described as follows:

$$
\begin{equation*}
u(x, t)=u_{i}(t) N_{i, j}(x)+u_{j}(t) N_{j, i}(x), \quad x \in\left[x_{i}, x_{j}\right] \tag{2.2.14}
\end{equation*}
$$

Note that u_{i}, u_{j} depend on time t whereas functions $N_{i, j}(x), N_{j, i}(x)$ are not. Differentiating the above equation with respect time t yields

$$
\begin{equation*}
\dot{u}(x, t)=\dot{u}_{i}(t) N_{i, j}(x)+\dot{u}_{j}(t) N_{j, i}(x), \quad x \in\left[x_{i}, x_{j}\right] \tag{2.2.15}
\end{equation*}
$$

Applying the above equation into integral over small region $\left[x_{i}, x_{j}\right]$, we have

$$
\int_{x_{i}}^{x_{j}} \frac{1}{2} \rho A \dot{u}^{2} \mathrm{~d} x=\frac{1}{2}\left[\begin{array}{cc}
\dot{u}_{i} & \dot{u}_{j}
\end{array}\right] \rho A h\left[\begin{array}{cc}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right]\left[\begin{array}{c}
\dot{u}_{i} \\
\dot{u}_{j}
\end{array}\right]
$$

(see Problem 4 in Chapter 2). Consequently,

$$
\begin{aligned}
T & =\frac{1}{2}\left[\begin{array}{ll}
\dot{u}_{1} & \dot{u}_{2}
\end{array}\right] \rho A h\left[\begin{array}{ll}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right]\left[\begin{array}{c}
\dot{u}_{1} \\
\dot{u}_{2}
\end{array}\right] \\
& +\frac{1}{2}\left[\begin{array}{ll}
\dot{u}_{2} & \dot{u}_{3}
\end{array}\right] \rho A h\left[\begin{array}{ll}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
\dot{u}_{2} \\
\dot{u}_{3}
\end{array}\right]+\cdots \\
& +\frac{1}{2}\left[\begin{array}{ll}
\dot{u}_{4} & \dot{u}_{5}
\end{array}\right] \rho A h\left[\begin{array}{ll}
1 / 3 & 1 / 6 \\
1 / 6 & 1 / 3
\end{array}\right]\left[\begin{array}{l}
\dot{u}_{4} \\
\dot{u}_{5}
\end{array}\right]
\end{aligned}
$$

which directly yields

$$
\begin{equation*}
T=\frac{1}{2} \dot{\boldsymbol{u}}_{\mathrm{N}}^{\top} M \dot{\boldsymbol{u}}_{\mathrm{N}} \tag{2.2.16}
\end{equation*}
$$

where $\dot{\boldsymbol{u}}_{\mathrm{N}}=\left[\dot{u}_{1}, \dot{u}_{2}, \cdots, \dot{u}_{5}\right]^{\top}$ and

$$
M=\rho A h \cdot \frac{1}{6}\left[\begin{array}{ccccc}
2 & 1 & & & \tag{2.2.17}\\
1 & 4 & 1 & & \\
& 1 & 4 & 1 & \\
& & 1 & 4 & 1 \\
& & & 1 & 2
\end{array}\right]
$$

Matrix M is referred to as a inertia matrix. Note that M is a band matrix. Sum of all elements of M coincides with the total mass, implying that the inertia matrix defines its distribution. The above calculation is simply described as

$$
\begin{equation*}
M=M_{1,2} \oplus M_{2,3} \oplus M_{3,4} \oplus M_{4,5} \tag{2.2.18}
\end{equation*}
$$

where

$$
M_{i, j}=\frac{\rho A h}{6}\left[\begin{array}{ll}
2 & 1 \tag{2.2.19}\\
1 & 2
\end{array}\right]
$$

denotes a partial inertia matrix corresponding to region $\left[x_{i}, x_{j}\right]$.
Let us calculate kinetic energy of a one-dimensional soft robot with non-uniform crosssectional area. Let function $A(x)$ denote the cross-sectional area at $\mathrm{P}(x)$. Assume that density ρ is constant. Kinetic energy over small region $\left[x_{i}, x_{j}\right]$ is then given by

$$
\int_{x_{i}}^{x_{j}} \frac{1}{2} \rho A \dot{u}^{2} \mathrm{~d} x=\frac{1}{2}\left[\begin{array}{ll}
\dot{u}_{i} & \dot{u}_{j}
\end{array}\right] \rho\left[\begin{array}{cc}
\bar{V}_{i, j}^{i, i} & \bar{V}_{i, j}^{i, j} \\
\bar{V}_{i, j}^{i, j} & \bar{V}_{i, j}^{j, j}
\end{array}\right]\left[\begin{array}{c}
\dot{u}_{i} \\
\dot{u}_{j}
\end{array}\right]
$$

Figure 2.1: Approximation of two-dimensional region
where

$$
\begin{aligned}
\bar{V}_{i, j}^{i, i} & =\int_{x_{i}}^{x_{j}} A(x)\left\{N_{i, j}(x)\right\}^{2} \mathrm{~d} x, \quad \bar{V}_{i, j}^{j, j}=\int_{x_{i}}^{x_{j}} A(x)\left\{N_{j, i}(x)\right\}^{2} \mathrm{~d} x, \\
\bar{V}_{i, j}^{i, j} & =\int_{x_{i}}^{x_{j}} A(x) N_{i, j}(x) N_{j, i}(x) \mathrm{d} x
\end{aligned}
$$

Thus, when region $[0, L]$ is divided into four small regions, inertia matrix is described as follows:

$$
M=\rho\left[\begin{array}{ccccc}
\bar{V}_{1}^{1,2} & \bar{V}_{1,2}^{1,2} & & & \\
\bar{V}_{1,2}^{1,2} & \bar{V}_{1,2}^{2,2}+\bar{V}_{2,3}^{2,2} & \bar{V}_{2,3}^{2,3} & & \\
& \bar{V}_{2,3}^{2,3} & \bar{V}_{2,3}^{3,3}+\bar{V}_{3,4}^{3,3} & \bar{V}_{3,4}^{3,4} & \\
& & \bar{V}_{3,4}^{3,4} & \bar{V}_{3,4}^{4,4}+\bar{V}_{4,5}^{4,4} & \bar{V}_{4,5}^{4,5} \\
& & & \bar{V}_{4,5}^{4,5} & \bar{V}_{4,5}^{5,5}
\end{array}\right]
$$

This matrix M is also a band matrix. Note that $\bar{V}_{i, j}^{i, i}+\bar{V}_{i, j}^{j, j}+2 \bar{V}_{i, j}^{i, j}=V_{i, j}$, implying that the inertia matrix defines the distribution of the total mass.

2.3 Two-dimensional finite element approximation

Strain potential energy and kinetic energy of a two-dimensional soft robot are formulated by integrals over two-dimensional region S, which is often described by an irregular shape, making analytical calculation of integrals difficult or impossible. Let us approximate twodimensional region S (Fig. 2.1(a)) by a set of small triangles (Fig. 2.1(b)). Then, integral over two-dimensional region S can be approximated by the sum of integrals over small triangles:

$$
\int_{S} \approx \sum_{\Delta \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}} \int_{\Delta \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}}
$$

Here we apply piecewise linear approximation to individual integrals over small triangles so that we can analytically or numerically calculate the integrals.

Finite element approximation of kinetic energy Let us calculate kinetic energy of a two-dimensional soft robot given by eq. (1.6.4), that is:

$$
\begin{equation*}
T=\int_{S} \frac{1}{2} \rho \dot{\boldsymbol{u}}^{\top} \dot{\boldsymbol{u}} h \mathrm{~d} S \tag{2.3.1}
\end{equation*}
$$

Figure 2.2: Example of rectangle region

First, we calculate integral over triangle region $\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$:

$$
\begin{equation*}
T_{i, j, k}=\int_{\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}} \frac{1}{2} \rho \dot{\boldsymbol{u}}^{\top} \dot{\boldsymbol{u}} h \mathrm{~d} S \tag{2.3.2}
\end{equation*}
$$

Piecewise linear approximation of function \boldsymbol{u} over triangle region $\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$ is described as follows:

$$
\begin{equation*}
\boldsymbol{u}=\boldsymbol{u}_{i} N_{i, j, k}+\boldsymbol{u}_{j} N_{j, k, i}+\boldsymbol{u}_{k} N_{k, i, j} . \tag{2.3.3}
\end{equation*}
$$

Noting that $\boldsymbol{u}_{i}, \boldsymbol{u}_{j}, \boldsymbol{u}_{k}$ depend on time while $N_{i, j, k}, N_{j, k, i}, N_{k, i, j}$ do not, we have

$$
\begin{equation*}
\dot{\boldsymbol{u}}=\dot{\boldsymbol{u}}_{i} N_{i, j, k}+\dot{\boldsymbol{u}}_{j} N_{j, k, i}+\dot{\boldsymbol{u}}_{k} N_{k, i, j} \tag{2.3.4}
\end{equation*}
$$

which directly yields

$$
\begin{aligned}
& \dot{\boldsymbol{u}}^{\top} \dot{\boldsymbol{u}}= \\
& {\left[\begin{array}{lll}
\dot{\boldsymbol{u}}_{i}^{\top} & \dot{\boldsymbol{u}}_{j}^{\top} & \dot{\boldsymbol{u}}_{k}^{\top}
\end{array}\right]\left[\begin{array}{ccc}
\left\{N_{i, j, k}\right\}^{2} I_{2 \times 2} & N_{i, j, k} N_{j, k, i} I_{2 \times 2} & N_{i, j, k} N_{k, i, j} I_{2 \times 2} \\
N_{i, j, k} N_{j, k, i} I_{2 \times 2} & \left\{N_{j, k, i}\right\}^{2} I_{2 \times 2} & N_{j, k, i} N_{k, i, j} I_{2 \times 2} \\
N_{i, j, k} N_{k, i, j} I_{2 \times 2} & N_{j, k, i} N_{k, i, j} I_{2 \times 2} & \left\{N_{k, i, j}\right\}^{2} I_{2 \times 2}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{u}}_{i} \\
\dot{\boldsymbol{u}}_{j} \\
\dot{\boldsymbol{u}}_{k}
\end{array}\right]}
\end{aligned}
$$

where $I_{2 \times 2}$ represents 2×2 identical matrix. For sake of simplicity, assume that density ρ and thickness h are constants. Then,

$$
\begin{align*}
T_{i, j, k} & =\frac{1}{2}\left[\begin{array}{lll}
\dot{\boldsymbol{u}}_{i}^{\top} & \dot{\boldsymbol{u}}_{j}^{\top} & \dot{\boldsymbol{u}}_{k}^{\top}
\end{array}\right] \rho h\left[\begin{array}{ccc}
(\triangle / 6) I_{2 \times 2} & (\triangle / 12) I_{2 \times 2} & (\triangle / 12) I_{2 \times 2} \\
(\triangle / 12) I_{2 \times 2} & (\triangle / 6) I_{2 \times 2} & (\triangle / 12) I_{2 \times 2} \\
(\triangle / 12) I_{2 \times 2} & (\triangle / 12) I_{2 \times 2} & (\triangle / 6) I_{2 \times 2}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{u}}_{i} \\
\dot{\boldsymbol{u}}_{j} \\
\dot{\boldsymbol{u}}_{k}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{lll}
\dot{\boldsymbol{u}}_{i}^{\top} & \dot{\boldsymbol{u}}_{j}^{\top} & \dot{\boldsymbol{u}}_{k}^{\top}
\end{array}\right] \frac{\rho h \triangle}{12}\left[\begin{array}{ccc}
2 I_{2 \times 2} & I_{2 \times 2} & I_{2 \times 2} \\
I_{2 \times 2} & 2 I_{2 \times 2} & I_{2 \times 2} \\
I_{2 \times 2} & I_{2 \times 2} & 2 I_{2 \times 2}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{u}}_{i} \\
\dot{\boldsymbol{u}}_{j} \\
\dot{\boldsymbol{u}}_{k}
\end{array}\right] \tag{2.3.5}
\end{align*}
$$

where $\triangle=\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$ (see Problem 6). Matrix

$$
M_{i, j, k}=\frac{\rho h \triangle}{12}\left[\begin{array}{ccc}
2 I_{2 \times 2} & I_{2 \times 2} & I_{2 \times 2} \tag{2.3.6}\\
I_{2 \times 2} & 2 I_{2 \times 2} & I_{2 \times 2} \\
I_{2 \times 2} & I_{2 \times 2} & 2 I_{2 \times 2}
\end{array}\right]
$$

is referred to as partial inertia matrix. Note that the sum of all blocks of matrix $M_{i, j, k}$ is equal to $\rho h \triangle I_{2 \times 2}$, which denotes the mass of this triangular element.

Let us calculate the total kinetic energy over rectangle region $\square \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{6} \mathrm{P}_{4}$ shown in Fig. 2.2. This region consists of four triangle regions: $\triangle \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}, \triangle \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{5}, \triangle \mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{2}$, and $\triangle \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{3}$. For sake of simplicity, assume that $\rho h \triangle / 12$ is constantly equal to 1 . Then, partial inertia matrices are given as

$$
M_{1,2,4}=M_{2,3,5}=M_{5,4,2}=M_{6,5,3}=\left[\begin{array}{ccc}
2 I_{2 \times 2} & I_{2 \times 2} & I_{2 \times 2} \\
I_{2 \times 2} & 2 I_{2 \times 2} & I_{2 \times 2} \\
I_{2 \times 2} & I_{2 \times 2} & 2 I_{2 \times 2}
\end{array}\right]
$$

Let $\boldsymbol{u}_{\mathrm{N}}$ be a collective vector consisting of all displacement vectors at nodal points:

$$
\boldsymbol{u}_{\mathrm{N}}=\left[\begin{array}{c}
\boldsymbol{u}_{1} \tag{2.3.7}\\
\boldsymbol{u}_{2} \\
\vdots \\
\boldsymbol{u}_{6}
\end{array}\right]
$$

which is referred to as nodal displacement vector. The total kinetic energy is then described by a quadratic form with respect to $\dot{\boldsymbol{u}}_{\mathrm{N}}$:

$$
T=\frac{1}{2} \dot{\boldsymbol{u}}_{\mathrm{N}}^{\top} M \dot{\boldsymbol{u}}_{\mathrm{N}}
$$

where M is referred to as inertia matrix. Noting that

$$
(1,2,3) \times(1,2,3) \text { blocks of } M_{1,2,4} \text { contribute to }(1,2,4) \times(1,2,4) \text { blocks of } M \text {, }
$$ namely,

$(1,1),(1,2),(1,3)$ blocks of $M_{1,2,4}$ contribute to $(1,1),(1,2),(1,4)$ blocks of M, $(2,1),(2,2),(2,3)$ blocks of $M_{1,2,4}$ contribute to $(2,1),(2,2),(2,4)$ blocks of M, $(3,1),(3,2),(3,3)$ blocks of $M_{1,2,4}$ contribute to $(4,1),(4,2),(4,4)$ blocks of M,
we find contribution of $M_{1,2,4}$ to M as follows:
$\left[\begin{array}{c|c|l|l|l|l}2 I_{2 \times 2} & I_{2 \times 2} & & I_{2 \times 2} & & \\ \hline I_{2 \times 2} & 2 I_{2 \times 2} & & I_{2 \times 2} & & \\ \hline & & & & & \\ \hline I_{2 \times 2} & I_{2 \times 2} & & 2 I_{2 \times 2} & & \\ \hline & & & & & \\ \hline & & & & & \end{array}\right]$.

Similarly,
$(1,2,3) \times(1,2,3)$ blocks of $M_{5,4,2}$ contribute to $(5,4,2) \times(5,4,2)$ blocks of M,
namely,
$(1,1),(1,2),(1,3)$ blocks of $M_{5,4,2}$ contribute to $(5,5),(5,4),(5,2)$ blocks of M, $(2,1),(2,2),(2,3)$ blocks of $M_{5,4,2}$ contribute to $(4,5),(4,4),(4,2)$ blocks of M, $(3,1),(3,2),(3,3)$ blocks of $M_{5,4,2}$ contribute to $(2,5),(2,4),(2,2)$ blocks of M,
we find contribution of $M_{5,4,2}$ to M as follows:
$\left[\begin{array}{l|c|l|c|c|c} & & & & & \\ \hline & 2 I_{2 \times 2} & & I_{2 \times 2} & I_{2 \times 2} & \\ \hline & & & & & \\ \hline & I_{2 \times 2} & & 2 I_{2 \times 2} & I_{2 \times 2} & \\ \hline & I_{2 \times 2} & & I_{2 \times 2} & 2 I_{2 \times 2} & \\ \hline & & & & & \\ \hline & & & & & \end{array}\right]$.

Summing up all contributions, we finally have

$$
M=\left[\begin{array}{cccccc}
2 I_{2 \times 2} & I_{2 \times 2} & & I_{2 \times 2} & & \\
I_{2 \times 2} & 6 I_{2 \times 2} & I_{2 \times 2} & 2 I_{2 \times 2} & 2 I_{2 \times 2} & \\
& I_{2 \times 2} & 4 I_{2 \times 2} & & 2 I_{2 \times 2} & I_{2 \times 2} \\
I_{2 \times 2} & 2 I_{2 \times 2} & & 4 I_{2 \times 2} & I_{2 \times 2} & \\
& 2 I_{2 \times 2} & 2 I_{2 \times 2} & I_{2 \times 2} & 6 I_{2 \times 2} & I_{2 \times 2} \\
& & I_{2 \times 2} & & I_{2 \times 2} & 2 I_{2 \times 2}
\end{array}\right]
$$

This inertia matrix M consists of $6^{2} 2 \times 2$ blocks and is a sparse matrix. We simply describe the above calculation as

$$
\begin{equation*}
M=M_{1,2,4} \oplus M_{2,3,5} \oplus M_{5,4,2} \oplus M_{6,5,3} . \tag{2.3.8}
\end{equation*}
$$

Operator \oplus works block-wise. In general, inertia matrix is described as

$$
\begin{equation*}
M=\bigoplus_{i, j, k} M_{i, j, k} \tag{2.3.9}
\end{equation*}
$$

where i, j, k represent nodal point numbers of each triangle.
Finite element approximation of strain potential energy We apply the above calculation to strain potential energy. First, let us calculate strain potential energy stored in small triangle region $\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$:

$$
\begin{equation*}
U_{i, j, k}=\int_{\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}} \frac{1}{2} \varepsilon^{\top}\left(\lambda I_{\lambda}+\mu I_{\mu}\right) \varepsilon h \mathrm{~d} S . \tag{2.3.10}
\end{equation*}
$$

Piecewise linear approximation of function \boldsymbol{u} over triangle region $\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$ is described as $\boldsymbol{u}=\boldsymbol{u}_{i} N_{i, j, k}+\boldsymbol{u}_{j} N_{j, k, i}+\boldsymbol{u}_{k} N_{k, i, j}$. Introducing collective vectors $\gamma_{u}=\left[u_{i}, u_{j}, u_{k}\right]^{\top}$ and $\gamma_{v}=\left[v_{i}, v_{j}, v_{k}\right]^{\top}$, we find

$$
\frac{\partial u}{\partial x}=\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{u}, \quad \frac{\partial u}{\partial y}=\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{u}, \quad \frac{\partial v}{\partial x}=\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{v}, \quad \frac{\partial v}{\partial y}=\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{v}
$$

where

$$
\boldsymbol{a}=\frac{1}{2 \triangle}\left[\begin{array}{l}
y_{j}-y_{k} \tag{2.3.11}\\
y_{k}-y_{i} \\
y_{i}-y_{j}
\end{array}\right], \quad \boldsymbol{b}=\frac{-1}{2 \triangle}\left[\begin{array}{c}
x_{j}-x_{k} \\
x_{k}-x_{i} \\
x_{i}-x_{j}
\end{array}\right]
$$

(see Problem 2). Then, strain vector is given as

$$
\boldsymbol{\varepsilon}=\left[\begin{array}{c}
\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{u} \tag{2.3.12}\\
\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{v} \\
\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{u}+\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{v}
\end{array}\right]
$$

Substituting the above equation into eq. (2.3.10), we have

$$
\begin{align*}
U_{i, j, k} & =\frac{1}{2}\left[\begin{array}{ll}
\boldsymbol{\gamma}_{u}^{\top} & \boldsymbol{\gamma}_{v}^{\top}
\end{array}\right] \lambda\left[\begin{array}{cc}
\boldsymbol{a} \boldsymbol{a}^{\top} & \boldsymbol{a} \boldsymbol{b}^{\top} \\
\boldsymbol{b} \boldsymbol{a}^{\top} & \boldsymbol{b} \boldsymbol{b}^{\top}
\end{array}\right] h \triangle\left[\begin{array}{c}
\gamma_{u} \\
\boldsymbol{\gamma}_{v}
\end{array}\right] \\
& +\frac{1}{2}\left[\begin{array}{ll}
\boldsymbol{\gamma}_{u}^{\top} & \boldsymbol{\gamma}_{v}^{\top}
\end{array}\right] \mu\left[\begin{array}{cc}
2 \boldsymbol{a} \boldsymbol{a}^{\top}+\boldsymbol{b} \boldsymbol{b}^{\top} & \boldsymbol{b}^{\top} \\
\boldsymbol{a b}^{\top} & 2 \boldsymbol{b} \boldsymbol{b}^{\top}+\boldsymbol{a} \boldsymbol{a}^{\top}
\end{array}\right] h \triangle\left[\begin{array}{c}
\gamma_{u} \\
\boldsymbol{\gamma}_{v}
\end{array}\right] \tag{2.3.13}
\end{align*}
$$

(see Problem 7). Then, we have

$$
\begin{equation*}
U_{i, j, k}=\frac{1}{2} \gamma^{\top}\left(\lambda H_{\lambda}+\mu H_{\mu}\right) \gamma \tag{2.3.14}
\end{equation*}
$$

where

$$
\begin{gathered}
\gamma=\left[\begin{array}{c}
\gamma_{u} \\
\gamma_{v}
\end{array}\right], \quad H_{\lambda}=\left[\begin{array}{cc}
\boldsymbol{a} \boldsymbol{a}^{\top} & \boldsymbol{a b}^{\top} \\
\boldsymbol{b} \boldsymbol{a}^{\top} & \boldsymbol{b b}^{\top}
\end{array}\right] h \triangle, \\
H_{\mu}=\left[\begin{array}{cc}
2 \boldsymbol{a} \boldsymbol{a}^{\top}+\boldsymbol{b} \boldsymbol{b}^{\top} & \boldsymbol{b}^{\top} \\
\boldsymbol{a} \boldsymbol{b}^{\top} & 2 \boldsymbol{b} \boldsymbol{b}^{\top}+\boldsymbol{a} \boldsymbol{a}^{\top}
\end{array}\right] h \triangle .
\end{gathered}
$$

The above equation is a quadratic form with respect to $\gamma=\left[u_{i}, u_{j}, u_{k}, v_{i}, v_{j}, v_{k}\right]^{\top}$. Let us permutate rows and columns of H_{λ} and H_{μ} so that $U_{i, j, k}$ is described by a quadratic form with respect to $\boldsymbol{u}_{i, j, k}=\left[u_{i}, v_{i}, u_{j}, v_{j}, u_{k}, v_{k}\right]^{\top}$. Namely, let $1,4,2,5,3,6$ rows and columns of H_{λ} be $1,2,3,4,5,6$ rows and columns of $J_{\lambda}^{i, j, k}$. Similarly, let 1, 4, 2, 5, 3, 6 rows and columns of H_{μ} be $1,2,3,4,5,6$ rows and columns of $J_{\mu}^{i, j, k}$. Then, we have

$$
\boldsymbol{\gamma}^{\top} H_{\lambda} \boldsymbol{\gamma}=\boldsymbol{u}_{i, j, k}^{\top} J_{\lambda}^{i, j, k} \boldsymbol{u}_{i, j, k}, \quad \boldsymbol{\gamma}^{\top} H_{\mu} \boldsymbol{\gamma}=\boldsymbol{u}_{i, j, k}^{\top} J_{\mu}^{i, j, k} \boldsymbol{u}_{i, j, k}
$$

Matrices $J_{\lambda}^{i, j, k}$ and $J_{\mu}^{i, j, k}$ are referred to as partial connection matrices. Once coordinates of $\mathrm{P}_{i}, \mathrm{P}_{j}, \mathrm{P}_{k}$ are given, we can calculate partial connection matrices $J_{\lambda}^{i, j, k}$ and $J_{\mu}^{i, j, k}$.

Finally, we find strain potential energy stored in $\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$:

$$
\begin{equation*}
U_{i, j, k}=\frac{1}{2} \boldsymbol{u}_{i, j, k}^{\top} K_{i, j, k} \boldsymbol{u}_{i, j, k} \tag{2.3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{i, j, k}=\lambda J_{\lambda}^{i, j, k}+\mu J_{\mu}^{i, j, k} \tag{2.3.16}
\end{equation*}
$$

is referred to as partial stiffness matrix.
Summing up all strain potential energies over small triangle regions, we obtain the total strain potential energy described as

$$
\begin{equation*}
U=\frac{1}{2} \boldsymbol{u}_{\mathrm{N}}^{\top} K \boldsymbol{u}_{\mathrm{N}} \tag{2.3.17}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\bigoplus_{i, j, k} K_{i, j, k} \tag{2.3.18}
\end{equation*}
$$

is referred to as stiffness matrix. Assuming that Lamé's constants λ and μ are uniform over the region, stiffness matrix is described as

$$
K=\bigoplus_{i, j, k}\left(\lambda J_{\lambda}^{i, j, k}+\mu J_{\mu}^{i, j, k}\right)=\lambda \bigoplus_{i, j, k} J_{\lambda}^{i, j, k}+\mu \bigoplus_{i, j, k} J_{\mu}^{i, j, k}
$$

which directly yields

$$
\begin{equation*}
K=\lambda J_{\lambda}+\mu J_{\mu} \tag{2.3.19}
\end{equation*}
$$

where

$$
J_{\lambda}=\bigoplus_{i, j, k} J_{\lambda}^{i, j, k}, \quad J_{\mu}=\bigoplus_{i, j, k} J_{\mu}^{i, j, k}
$$

are referred to as connection matrices.

Example Let us calculate partial connection matrices of triangle $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}$ shown in Fig. 2.2. Vectors $\boldsymbol{a}, \boldsymbol{b}$ are given by $\boldsymbol{a}=[-1,1,0]^{\top}$ and $\boldsymbol{b}=[-1,0,1]^{\top}$. Assuming $h=2$, we have

$$
H_{\lambda}=\left[\begin{array}{ccc|ccc}
1 & -1 & 0 & 1 & 0 & -1 \\
-1 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & -1 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & -1 & 0 & 1
\end{array}\right], \quad H_{\mu}=\left[\begin{array}{ccc|ccc}
3 & -2 & -1 & 1 & -1 & 0 \\
-2 & 2 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & -1 & 1 & 0 \\
\hline 1 & 0 & -1 & 3 & -1 & -2 \\
-1 & 0 & 1 & -1 & 1 & 0 \\
0 & 0 & 0 & -2 & 0 & 2
\end{array}\right]
$$

Permuting rows and columns of the above matrices, we find

$$
\left.\begin{array}{l}
J_{\lambda}^{1,2,4}=\left[\begin{array}{rr|rr|rr}
1 & 1 & -1 & 0 & 0 & -1 \\
1 & 1 & -1 & 0 & 0 & -1 \\
\hline-1 & -1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 1 & 0 & 0 & 1
\end{array}\right] \\
J_{\mu}^{1,2,4}
\end{array} \begin{array}{rr|rr|rr}
3 & 1 & -2 & -1 & -1 & 0 \\
1 & 3 & 0 & -1 & -1 & -2 \\
\hline-2 & 0 & 2 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 1 & 0 \\
\hline-1 & -1 & 0 & 1 & 1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2
\end{array}\right] .
$$

Let us calculate partial connection matrices of triangle $\mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{2}$ shown in Fig. 2.2. Vectors $\boldsymbol{a}, \boldsymbol{b}$ are given by $\boldsymbol{a}=[-1,1,0]^{\top}$ and $\boldsymbol{b}=[-1,0,1]^{\top}$. Thus, assuming $h=2$, we find $J_{\lambda}^{5,4,2}=J_{\lambda}^{1,2,4}$ and $J_{\mu}^{5,4,2}=J_{\mu}^{1,2,4}$. Partial connection matrices are invariant with respect to translation displacement. As a result, under the same assumption, we have

$$
J_{\lambda}^{1,2,4}=J_{\lambda}^{2,3,5}=J_{\lambda}^{5,4,2}=J_{\lambda}^{6,5,3}, \quad J_{\mu}^{1,2,4}=J_{\mu}^{2,3,5}=J_{\mu}^{5,4,2}=J_{\mu}^{6,5,3}
$$

Let us calculate connection matrices J_{λ} and J_{μ} of rectangle region $\square \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{6} \mathrm{P}_{4}$ shown in Fig. 2.2. Noting that

$$
(1,2,3) \times(1,2,3) \text { blocks of } J_{\lambda}^{1,2,4} \text { contribute to }(1,2,4) \times(1,2,4) \text { blocks of } J_{\lambda} \text {, }
$$ namely,

$(1,1),(1,2),(1,3)$ blocks of $J_{\lambda}^{1,2,4}$ contribute to $(1,1),(1,2),(1,4)$ blocks of J_{λ},
$(2,1),(2,2),(2,3)$ blocks of $J_{\lambda}^{1,2,4}$ contribute to $(2,1),(2,2),(2,4)$ blocks of J_{λ},
$(3,1),(3,2),(3,3)$ blocks of $J_{\lambda}^{1,2,4}$ contribute to $(4,1),(4,2),(4,4)$ blocks of J_{λ},
we obtain contribution of $J_{\lambda}^{1,2,4}$ to J_{λ}. Noting that

$$
(1,2,3) \times(1,2,3) \text { blocks of } J_{\lambda}^{5,4,2} \text { contribute to }(5,4,2) \times(5,4,2) \text { blocks of } J_{\lambda},
$$ namely,

$(1,1),(1,2),(1,3)$ blocks of $J_{\lambda}^{5,4,2}$ contribute to $(5,5),(5,4),(5,2)$ blocks of J_{λ},
$(2,1),(2,2),(2,3)$ blocks of $J_{\lambda}^{5,4,2}$ contribute to $(4,5),(4,4),(4,2)$ blocks of J_{λ},
$(3,1),(3,2),(3,3)$ blocks of $J_{\lambda}^{5,4,2}$ contribute to $(2,5),(2,4),(2,2)$ blocks of J_{λ},
we obtain contribution of $J_{\lambda}^{5,4,2}$ to J_{λ}. Summing up all contributions, we finally have

$$
J_{\lambda}=\left[\begin{array}{rr|rr|rr|rr|rr|rr}
1 & 1 & -1 & 0 & & & 0 & -1 & & & & \\
1 & 1 & -1 & 0 & & & 0 & -1 & & & & \\
\hline-1 & -1 & 2 & 1 & -1 & 0 & 0 & 1 & 0 & -1 & & \\
0 & 0 & 1 & 2 & -1 & 0 & 1 & 0 & -1 & -2 & & \\
\hline & & -1 & -1 & 1 & 0 & & & 0 & 1 & 0 & 0 \\
& & 0 & 0 & 0 & 1 & & & 1 & 0 & -1 & -1 \\
\hline 0 & 0 & 0 & 1 & & & 1 & 0 & -1 & -1 & & \\
-1 & -1 & 1 & 0 & & & 0 & 1 & 0 & 0 & & \\
\hline & & 0 & -1 & 0 & 1 & -1 & 0 & 2 & 1 & -1 & -1 \\
& & -1 & -2 & 1 & 0 & -1 & 0 & 1 & 2 & 0 & 0 \\
\hline & & & 0 & -1 & & & -1 & 0 & 1 & 1 \\
& & & & 0 & -1 & & & -1 & 0 & 1 & 1
\end{array}\right]
$$

We simply describe the above calculation as

$$
\begin{equation*}
J_{\lambda}=J_{\lambda}^{1,2,4} \oplus J_{\lambda}^{2,3,5} \oplus J_{\lambda}^{5,4,2} \oplus J_{\lambda}^{6,5,3} \tag{2.3.20}
\end{equation*}
$$

Operator \oplus works block-wise. Similarly, we have

$$
\begin{equation*}
J_{\mu}=J_{\mu}^{1,2,4} \oplus J_{\mu}^{2,3,5} \oplus J_{\mu}^{5,4,2} \oplus J_{\mu}^{6,5,3} \tag{2.3.21}
\end{equation*}
$$

which yields

$$
J_{\mu}=\left[\begin{array}{rr|rr|r|rr|rr|rr}
3 & 1 & -2 & -1 & & & -1 & 0 & & & \\
& & 3 & 0 & -1 & & & -1 & -2 & & \\
& & & & \\
\hline-2 & 0 & 6 & 1 & -2 & -1 & 0 & 1 & -2 & -1 & \\
-1 & -1 & 1 & 6 & 0 & -1 & 1 & 0 & -1 & -4 & \\
\hline & & -2 & 0 & 3 & 0 & & & 0 & 1 & -1 \\
& & -1 & -1 & 0 & 3 & & & 1 & 0 & 0 \\
\hline
\end{array}\right]
$$

Matrices J_{λ} and J_{μ} are sparse matrices.

2.4 Three-dimensional finite element approximation

Strain potential energy and kinetic energy of a three-dimensional soft robot are formulated by integrals over three-dimensional region V, which is often described by an irregular shape, making analytical calculation of integrals difficult or impossible. Let us approximate threedimensional region V by a set of small tetrahedra. Then, integral over three-dimensional region V can be approximated by the sum of integrals over small tetrahedra:

$$
\int_{V} \approx \sum_{\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}} \int_{\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}}
$$

Here we apply piecewise linear approximation so that we can analytically or numerically calculate individual integrals over small tetrahedra.

Finite element approximation of kinetic energy Let us calculate kinetic energy over tetrahedron region $\forall \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$:

$$
\begin{equation*}
T_{i, j, k, l}=\int_{\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}} \frac{1}{2} \rho \dot{\boldsymbol{u}}^{\top} \dot{\boldsymbol{u}} \mathrm{d} V \tag{2.4.1}
\end{equation*}
$$

Piecewise linear approximation of function \boldsymbol{u} over tetrahedron region $\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$ is described as follows:

$$
\begin{equation*}
\boldsymbol{u}=\boldsymbol{u}_{i} N_{i, j, k, l}+\boldsymbol{u}_{j} N_{j, k, l, i}+\boldsymbol{u}_{k} N_{k, l, i, j}+\boldsymbol{u}_{l} N_{l, k, i, j} . \tag{2.4.2}
\end{equation*}
$$

Differentiating the above equation with respect to time t, we have

$$
\begin{equation*}
\dot{\boldsymbol{u}}=\dot{\boldsymbol{u}}_{i} N_{i, j, k, l}+\dot{\boldsymbol{u}}_{j} N_{j, k, l, i}+\dot{\boldsymbol{u}}_{k} N_{k, l, i, j}+\dot{\boldsymbol{u}}_{l} N_{l, k, i, j} . \tag{2.4.3}
\end{equation*}
$$

For sake of simplicity, assume that density ρ is constant. Letting $I_{3 \times 3}$ represent 3×3 identical matrix, we have

$$
T_{i, j, k, l}=\frac{1}{2}\left[\begin{array}{llll}
\dot{\boldsymbol{u}}_{i}^{\top} & \dot{\boldsymbol{u}}_{j}^{\top} & \dot{\boldsymbol{u}}_{k}^{\top} & \dot{\boldsymbol{u}}_{l}^{\top}
\end{array}\right] \frac{\rho \diamond}{20}\left[\begin{array}{cccc}
2 I_{3 \times 3} & I_{3 \times 3} & I_{3 \times 3} & I_{3 \times 3} \tag{2.4.4}\\
I_{3 \times 3} & 2 I_{3 \times 3} & I_{3 \times 3} & I_{3 \times 3} \\
I_{3 \times 3} & I_{3 \times 3} & 2 I_{3 \times 3} & I_{3 \times 3} \\
I_{3 \times 3} & I_{3 \times 3} & I_{3 \times 3} & 2 I_{3 \times 3}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{u}}_{i} \\
\dot{\boldsymbol{u}}_{j} \\
\dot{\boldsymbol{u}}_{k} \\
\dot{\boldsymbol{u}}_{l}
\end{array}\right]
$$

where $\diamond=\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$ (see Problem 8). Matrix

$$
M_{i, j, k, l}=\frac{\rho \diamond}{20}\left[\begin{array}{cccc}
2 I_{3 \times 3} & I_{3 \times 3} & I_{3 \times 3} & I_{3 \times 3} \tag{2.4.5}\\
I_{3 \times 3} & 2 I_{3 \times 3} & I_{3 \times 3} & I_{3 \times 3} \\
I_{3 \times 3} & I_{3 \times 3} & 2 I_{3 \times 3} & I_{3 \times 3} \\
I_{3 \times 3} & I_{3 \times 3} & I_{3 \times 3} & 2 I_{3 \times 3}
\end{array}\right]
$$

is referred to as partial inertia matrix. Note that the sum of all blocks of matrix $M_{i, j, k, l}$ is equal to $\rho \diamond I_{3 \times 3}$, which denotes the mass of this tetrahedron element.

Summing up all kinetic energies over small tetrahedron regions, we obtain the total kinetic energy described as

$$
T=\frac{1}{2} \dot{\boldsymbol{u}}_{\mathrm{N}}^{\top} M \dot{\boldsymbol{u}}_{\mathrm{N}}
$$

where M is referred to as inertia matrix.

Finite element approximation of strain potential energy We calculate strain potential energy stored in small tetrahedron region $\forall \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$. Introducing collective vectors $\gamma_{u}=\left[u_{i}, u_{j}, u_{k}, u_{l}\right]^{\top}, \gamma_{v}=\left[v_{i}, v_{j}, v_{k}, v_{k}\right]^{\top}$, and $\gamma_{w}=\left[w_{i}, w_{j}, w_{k}, w_{k}\right]^{\top}$, we find

$$
\begin{array}{lll}
\frac{\partial u}{\partial x}=\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{u}, & \frac{\partial u}{\partial y}=\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{u}, & \frac{\partial u}{\partial z}=\boldsymbol{c}^{\top} \boldsymbol{\gamma}_{u} \\
\frac{\partial v}{\partial x}=\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{v}, & \frac{\partial v}{\partial y}=\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{v}, & \frac{\partial v}{\partial z}=\boldsymbol{c}^{\top} \boldsymbol{\gamma}_{v} \\
\frac{\partial w}{\partial x}=\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{w}, & \frac{\partial w}{\partial y}=\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{w}, & \frac{\partial w}{\partial z}=\boldsymbol{c}^{\top} \boldsymbol{\gamma}_{w}
\end{array}
$$

where

$$
\boldsymbol{a}=\frac{1}{6 \diamond}\left[\begin{array}{r}
-a_{j, k, l} \\
a_{k, l, i} \\
-a_{l, i, j} \\
a_{i, j, k}
\end{array}\right], \quad \boldsymbol{b}=\frac{1}{6 \diamond}\left[\begin{array}{r}
-b_{j, k, l} \\
b_{k, l, i} \\
-b_{l, i, j} \\
b_{i, j, k}
\end{array}\right], \quad \boldsymbol{c}=\frac{1}{6 \diamond}\left[\begin{array}{r}
-c_{j, k, l} \\
c_{k, l, i} \\
-c_{l, i, j} \\
c_{i, j, k}
\end{array}\right]
$$

with

$$
\begin{aligned}
a_{j, k, l} & =\left(y_{j} z_{k}-y_{k} z_{j}\right)+\left(y_{k} z_{l}-y_{l} z_{k}\right)+\left(y_{l} z_{j}-y_{j} z_{l}\right) \\
b_{j, k, l} & =\left(z_{j} x_{k}-z_{k} x_{j}\right)+\left(z_{k} x_{l}-z_{l} x_{k}\right)+\left(z_{l} x_{j}-z_{j} x_{l}\right) \\
c_{j, k, l} & =\left(x_{j} y_{k}-x_{k} y_{j}\right)+\left(x_{k} y_{l}-x_{l} y_{k}\right)+\left(x_{l} y_{j}-x_{j} y_{l}\right)
\end{aligned}
$$

(see Problem 3). Strain vector is given as

$$
\boldsymbol{\varepsilon}=\left[\begin{array}{c}
\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{u} \\
\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{v} \\
\boldsymbol{c}^{\top} \boldsymbol{\gamma}_{w} \\
\boldsymbol{c}^{\top} \boldsymbol{\gamma}_{v}+\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{w} \\
\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{w}+\boldsymbol{c}^{\top} \boldsymbol{\gamma}_{u} \\
\boldsymbol{b}^{\top} \boldsymbol{\gamma}_{u}+\boldsymbol{a}^{\top} \boldsymbol{\gamma}_{v}
\end{array}\right] .
$$

Then, strain potential energy stored in $\forall \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$ is given by

$$
\begin{equation*}
U_{i, j, k, l}=\frac{1}{2} \gamma^{\top}\left(\lambda H_{\lambda}+\mu H_{\mu}\right) \gamma \tag{2.4.6}
\end{equation*}
$$

where

$$
\begin{align*}
\gamma & =\left[\begin{array}{l}
\gamma_{u} \\
\gamma_{v} \\
\gamma_{w}
\end{array}\right], \quad H_{\lambda}=\left[\begin{array}{ccc}
\boldsymbol{a} \boldsymbol{a}^{\top} & \boldsymbol{a b}^{\top} & \boldsymbol{a} \boldsymbol{c}^{\top} \\
\boldsymbol{b} \boldsymbol{a}^{\top} & \boldsymbol{b b}^{\top} & \boldsymbol{b} \boldsymbol{c}^{\top} \\
\boldsymbol{c} \boldsymbol{a}^{\top} & \boldsymbol{c b}^{\top} & \boldsymbol{c} \boldsymbol{c}^{\top}
\end{array}\right] \diamond, \\
H_{\mu} & =\left[\begin{array}{ccc}
2 \boldsymbol{a} \boldsymbol{a}^{\top}+\boldsymbol{b} \boldsymbol{b}^{\top}+\boldsymbol{c} \boldsymbol{c}^{\top} & \boldsymbol{b a}^{\top} & \boldsymbol{c a}^{\top} \\
\boldsymbol{a} \boldsymbol{b}^{\top} & 2 \boldsymbol{b} \boldsymbol{b}^{\top}+\boldsymbol{c \boldsymbol { c } ^ { \top }}+\boldsymbol{a} \boldsymbol{a}^{\top} & \boldsymbol{c b}^{\top} \\
\boldsymbol{a} \boldsymbol{c}^{\top} & \boldsymbol{b}^{\top} & 2 \boldsymbol{c} \boldsymbol{c}^{\top}+\boldsymbol{a} \boldsymbol{a}^{\top}+\boldsymbol{b} \boldsymbol{b}^{\top}
\end{array}\right] \diamond . \tag{2.4.7}
\end{align*}
$$

Let us permutate rows and columns of H_{λ} and H_{μ} so that $U_{i, j, k, l}$ is described by a quadratic form of $\boldsymbol{u}_{i, j, k, l}=\left[\boldsymbol{u}_{i}^{\top}, \boldsymbol{u}_{j}^{\top}, \boldsymbol{u}_{k}^{\top}, \boldsymbol{u}_{l}^{\top}\right]^{\top}$. Namely, let $1,5,9,2,6,10,3,7,11,4,8,12$ rows and columns of H_{λ} be 1 through 12 rows and columns of $J_{\lambda}^{i, j, k, l}$. Similarly, let 1, 5, 9, 2, 6, $10,3,7,11,4,8,12$ rows and columns of H_{μ} be 1 through 12 rows and columns of $J_{\mu}^{i, j, k, l}$. Then, we have

$$
\gamma^{\top} H_{\lambda} \gamma=\boldsymbol{u}_{i, j, k, l}^{\top} J_{\lambda}^{i, j, k, l} \boldsymbol{u}_{i, j, k, l}, \quad \gamma^{\top} H_{\mu} \gamma=\boldsymbol{u}_{i, j, k, l}^{\top} J_{\mu}^{i, j, k, l} \boldsymbol{u}_{i, j, k, l}
$$

Matrices $J_{\lambda}^{i, j, k, l}$ and $J_{\mu}^{i, j, k, l}$ are referred to as partial connection matrices. Once coordinates of $\mathrm{P}_{i}, \mathrm{P}_{j}, \mathrm{P}_{k}, \mathrm{P}_{l}$ are given, we can calculate partial connection matrices $J_{\lambda}^{i, j, k, l}$ and $J_{\mu}^{i, j, k, l}$.

Finally, we find strain potential energy stored in $\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$:

$$
\begin{equation*}
U_{i, j, k, l}=\frac{1}{2} \boldsymbol{u}_{i, j, k, l}^{\top} K_{i, j, k, l} \boldsymbol{u}_{i, j, k, l} \tag{2.4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{i, j, k, l}=\lambda J_{\lambda}^{i, j, k, l}+\mu J_{\mu}^{i, j, k, l} \tag{2.4.9}
\end{equation*}
$$

which is referred to as partial stiffness matrix.
Summing up all strain potential energies over small tetrahedron regions, we obtain the total strain potential energy described as

$$
\begin{equation*}
U=\frac{1}{2} \boldsymbol{u}_{\mathrm{N}}^{\top} K \boldsymbol{u}_{\mathrm{N}} \tag{2.4.10}
\end{equation*}
$$

Figure 2.3: Example of regular quadrangular pyramid
where

$$
\begin{equation*}
K=\bigoplus_{i, j, k, l} K_{i, j, k, l} \tag{2.4.11}
\end{equation*}
$$

is referred to as stiffness matrix. Assuming that Lamé's constants λ and μ are uniform over the region, stiffness matrix is described as

$$
\begin{equation*}
K=\lambda J_{\lambda}+\mu J_{\mu} \tag{2.4.12}
\end{equation*}
$$

where matrices J_{λ} and J_{μ} are referred to as connection matrices.
Let us calculate connection matrices of a regular quadrangular pyramid (Fig. 2.3). The base of the pyramid is square $\square \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$ and the apex of the pyramid is P_{5}. Coordinates of vertices are given by $\boldsymbol{x}_{1}=[0,0,0]^{\top}, \boldsymbol{x}_{2}=[2,0,0]^{\top}, \boldsymbol{x}_{3}=[2,2,0]^{\top}, \boldsymbol{x}_{4}=[0,2,0]^{\top}$, and $\boldsymbol{x}_{5}=[1,1,1]^{\top}$. The piramid consists of two tetraheda: $\forall \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{5}$ and $\forall \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{1} \mathrm{P}_{5}$.

Partial connection matrices of $\forall \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{5}$ are as follows:

$$
\begin{aligned}
& J_{\lambda}^{1,2,3,5}=\frac{1}{4}\left[\begin{array}{ccc|ccc|ccc|ccc}
1 & 0 & 1 & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & -2 \\
\hline-1 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 2 \\
1 & 0 & 1 & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 2 \\
1 & 0 & 1 & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & -2 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & 0 & -2 & 2 & -2 & 0 & 0 & 2 & -2 & 0 & 0 & 4
\end{array}\right] \\
& J_{\mu}^{1,2,3,5}=\frac{1}{4}\left[\begin{array}{ccc|ccc|ccccc}
3 & 0 & 1 & -2 & 0 & -1 & 1 & 0 & 0 & -2 & 0 \\
0 & 2 & 0 & 1 & -1 & 1 & -1 & 1 & -1 & 0 & -2 \\
0 \\
1 & 0 & 3 & 0 & 0 & -1 & 1 & 0 & 2 & -2 & 0 \\
\hline-2 & 1 & 0 & 3 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 3 & 0 & 1 & -2 & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 & 0 & 2 & -1 & 1 & -1 & 2 & -2 \\
\hline 1 & -1 & 1 & -1 & 1 & -1 & 2 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 0 & -2 & 1 & 0 & 3 & -1 & 0 & -2 \\
0 \\
0 & -1 & 2 & 0 & 0 & -1 & 0 & -1 & 3 & 0 & 2 \\
\hline-2 & 0 & -2 & 0 & 0 & 2 & -2 & 0 & 0 & 4 & 0 \\
\hline 0 & -2 & 0 & 0 & 0 & -2 & 0 & -2 & 2 & 0 & 4 \\
0 \\
0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & -4 & 0 & 0 \\
\hline
\end{array}\right]
\end{aligned}
$$

Note that $(1,2,3,4) \times(1,2,3,4)$ blocks of $J_{\lambda}^{1,2,3,5}$ and $J_{\mu}^{1,2,3,5}$ contribute to $(1,2,3,5) \times$ $(1,2,3,5)$ blocks of J_{λ} and J_{μ}

Partial connection matrices of $\diamond \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{1} \mathrm{P}_{5}$ are as follows:

$$
\begin{aligned}
& J_{\lambda}^{3,4,1,5}=\frac{1}{4}\left[\begin{array}{ccc|ccc|ccc|ccc}
1 & 0 & -1 & -1 & 1 & 0 & 0 & -1 & -1 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & -1 & 0 & 0 & 1 & 1 & 0 & 0 & -2 \\
\hline-1 & 0 & 1 & 1 & -1 & 0 & 0 & 1 & 1 & 0 & 0 & -2 \\
1 & 0 & -1 & -1 & 1 & 0 & 0 & -1 & -1 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & -1 & 0 & 0 & 1 & 1 & 0 & 0 & -2 \\
-1 & 0 & 1 & 1 & -1 & 0 & 0 & 1 & 1 & 0 & 0 & -2 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & -2 & -2 & 2 & 0 & 0 & -2 & -2 & 0 & 0 & 4
\end{array}\right] \\
& J_{\mu}^{3,4,1,5}=\frac{1}{4}\left[\begin{array}{ccc|c|ccc|ccc}
3 & 0 & -1 & -2 & 0 & 1 & 1 & 0 & 0 & -2 \\
0 & 0 & 0 \\
0 & 2 & 0 & 1 & -1 & -1 & -1 & 1 & 1 & 0 \\
-2 & 0 \\
-1 & 0 & 3 & 0 & 0 & -1 & -1 & 0 & 2 & 2 \\
0 & -4 \\
\hline-2 & 1 & 0 & 3 & -1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & -1 & 0 & -1 & 3 & 0 & 1 & -2 & 0 & 0 \\
0 & 0 \\
1 & -1 & -1 & 0 & 0 & 2 & 1 & -1 & -1 & -2 \\
2 & 0 \\
\hline 1 & -1 & -1 & -1 & 1 & 1 & 2 & 0 & 0 & -2 \\
0 & 0 \\
0 & 1 & 0 & 0 & -2 & -1 & 0 & 3 & 1 & 0 \\
-2 & 0 \\
0 & 1 & 2 & 0 & 0 & -1 & 0 & 1 & 3 & 0 \\
-2 & -4 \\
\hline-2 & 0 & 2 & 0 & 0 & -2 & -2 & 0 & 0 & 4 \\
0 & 0 \\
0 & -2 & 0 & 0 & 0 & 2 & 0 & -2 & -2 & 0 \\
4 & 0 \\
0 & 0 & -4 & 0 & 0 & 0 & 0 & 0 & -4 & 0 \\
0 & 8
\end{array}\right]
\end{aligned}
$$

Note that $(1,2,3,4) \times(1,2,3,4)$ blocks of $J_{\lambda}^{3,4,1,5}$ and $J_{\mu}^{3,4,1,5}$ contribute to $(3,4,1,5) \times$ $(3,4,1,5)$ blocks of J_{λ} and J_{μ}

Synthesizing the above partial connection matrices yields the following connection matrices:

$$
J_{\lambda}=\frac{1}{4}\left[\begin{array}{ccc|ccc|ccc|ccc|ccc}
1 & 0 & 1 & -1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & -2 \\
0 & 1 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & -2 \\
1 & 1 & 2 & -1 & 1 & 0 & -1 & -1 & 2 & 1 & -1 & 0 & 0 & 0 & -4 \\
\hline-1 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & -1 & & & & 0 & 0 & 2 \\
1 & 0 & 1 & -1 & 1 & 0 & 0 & -1 & 1 & & & & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & 0 & 0 & 0 \\
\hline 0 & -1 & -1 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & 1 & 0 & 0 & 0 & 2 \\
-1 & 0 & -1 & 1 & -1 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 2 \\
1 & 1 & 2 & -1 & 1 & 0 & -1 & -1 & 2 & 1 & -1 & 0 & 0 & 0 & -4 \\
\hline 0 & 1 & 1 & & & & -1 & 0 & 1 & 1 & -1 & 0 & 0 & 0 & -2 \\
0 & -1 & -1 & & & & 1 & 0 & -1 & -1 & 1 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-2 & -2 & -4 & 2 & -2 & 0 & 2 & 2 & -4 & -2 & 2 & 0 & 0 & 0 & 8
\end{array}\right]
$$

$$
J_{\mu}=\frac{1}{4}\left[\begin{array}{ccc|ccc|ccc|ccc|ccc}
5 & 0 & 1 & -2 & 0 & -1 & 2 & -1 & -1 & -1 & 1 & 1 & -4 & 0 & 0 \\
0 & 5 & 1 & 1 & -1 & 1 & -1 & 2 & -1 & 0 & -2 & -1 & 0 & -4 & 0 \\
1 & 1 & 6 & 0 & 0 & -1 & 1 & 1 & 4 & 0 & 0 & -1 & -2 & -2 & -8 \\
\hline-2 & 1 & 0 & 3 & -1 & 0 & -1 & 0 & 0 & & & & 0 & 0 & 0 \\
0 & -1 & 0 & -1 & 3 & 0 & 1 & -2 & 0 & & & & 0 & 0 & 0 \\
-1 & 1 & -1 & 0 & 0 & 2 & -1 & 1 & -1 & & & & 2 & -2 & 0 \\
\hline 2 & -1 & 1 & -1 & 1 & -1 & 5 & 0 & -1 & -2 & 0 & 1 & -4 & 0 & 0 \\
-1 & 2 & 1 & 0 & -2 & 1 & 0 & 5 & -1 & 1 & -1 & -1 & 0 & -4 & 0 \\
-1 & -1 & 4 & 0 & 0 & -1 & -1 & -1 & 6 & 0 & 0 & -1 & 2 & 2 & -8 \\
\hline-1 & 0 & 0 & & & & -2 & 1 & 0 & 3 & -1 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & & & & 0 & -1 & 0 & -1 & 3 & 0 & 0 & 0 & 0 \\
1 & -1 & -1 & & & & 1 & -1 & -1 & 0 & 0 & 2 & -2 & 2 & 0 \\
\hline-4 & 0 & -2 & 0 & 0 & 2 & -4 & 0 & 2 & 0 & 0 & -2 & 8 & 0 & 0 \\
0 & -4 & -2 & 0 & 0 & -2 & 0 & -4 & 2 & 0 & 0 & 2 & 0 & 8 & 0 \\
0 & 0 & -8 & 0 & 0 & 0 & 0 & 0 & -8 & 0 & 0 & 0 & 0 & 0 & 16
\end{array}\right]
$$

Since either tetrahedron does not include both P_{2} and $\mathrm{P}_{4},(2,4)$ and $(4,2)$ blocks of the connection matrices are zero matrices.

2.5 Implementation

Two-dimensional finite element calculation was implemented on MATLAB. Classes Body, Triangle, and NodalPoint were introduced. Class Body defines a two-dimensional body, which consists of an array of triangles and an array of nodal points. Class Triangle specifies a triangle, including three numbers of nodal points. Class NodalPoint defines a nodal point, including its two coordinates.

For example, rectangle region in Fig. 2.2 consists of 6 nodal points and 4 triangles. Coordinates of individual nodal points are listed as

$$
\text { points }=\left[\begin{array}{llllll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \boldsymbol{x}_{4} & \boldsymbol{x}_{5} & \boldsymbol{x}_{6}
\end{array}\right]=\left[\begin{array}{llllll}
0 & 1 & 2 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

Nodal point numbers for individual triangular elements are listed as

$$
\text { triangles }=\left[\begin{array}{ccc}
1 & 2 & 4 \\
2 & 3 & 5 \\
5 & 4 & 2 \\
6 & 5 & 3
\end{array}\right]
$$

which implies that $\triangle_{1}=\triangle \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{4}, \triangle_{2}=\triangle \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{5}, \triangle_{3}=\triangle \mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{2}$, and $\triangle_{4}=\triangle \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{3}$. The rectangle region is then given by

```
elastic = Body(6, points, 4, triangles, thickness);
```

where thickness specifies thickness h of the two-dimensional body.
Instance of class Triangle includes geometric propertices such as nodal point numbers, area, and thickness as well as physical parameters such as density and Lamé's constants. Class Triangle involves the following methods:
partial_derivaties calculating partial derivatives $\partial u / \partial x, \partial u / \partial y, \partial v / \partial x, \partial v / \partial y$ calculate_Cauchy_strain calculating Cauchy strain in the triangle partial_strain_potential_energy strain potential energy stored in the triangle
calculate_Green_strain calculating Green strain in the triangle partial_strain_potential_energy_Green_strain strain energy using Green strain partial_gravitational_potential_energy gravitational energy stored in the triangle partial_stiffness_matrix calculating partial stiffness matrix $K_{i, j, k}$
partial_inertia_matrix calculating partial inertia matrix $M_{i, j, k}$ partial_gravitational_vector calculating partial gravitational vector $\boldsymbol{g}_{i, j, k}$
Class Body involves the following methods:
total_strain_potential_energy calculating strain energy stored in the body total_strain_potential_energy_Green_strain strain energy using Green strain total_gravitational_potential_energy gravitational energy stored in the body calculate_stiffness_matrix calculating stiffness matrix K calculate_inertia_matrix calculating inertia matrix M calculate_gravitational_vector calculating gravitational vector \boldsymbol{g} constraint_matrix constraint matrix when specified nodal points are fixed draw draw the shape of the body

Assuming that density ρ and Lamé's constants λ, μ are uniform over the region, the following specifies these parameters:

```
elastic = elastic.mechanical_parameters(rho, lambda, mu);
```

The following calculates the stiffness and inertia matrices:

```
elastic = elastic.calculate_stiffness_matrix;
elastic = elastic.calculate_inertia_matrix;
```

The stiffness and inertia matrices are then referred by

```
M = elastic.Inertia_Matrix;
K = elastic.Stiffness_Matrix;
```

which can be applied to static and dynamic calculation of the motion and deformation of a soft body.

Three-dimensional finite element calculation was implemented on MATLAB. Classes Body, Tetrahedron, and NodalPoint were introduced. Class Body defines a three-dimensional body, which consists of an array of tetrahedra and an array of nodal points. Class Tetrahedron specifies a tetrahedron, including four numbers of nodal points. Class NodalPoint defines a nodal point, including its three coordinates.

For example, a regular quadrangular pyramid (Fig. 2.3) consists of 5 nodal points and 2 tetrahedra. Coordinates of individual nodal points are listed as

$$
\text { points }=\left[\begin{array}{lllll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \boldsymbol{x}_{4} & \boldsymbol{x}_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 2 & 2 & 0 & 1 \\
0 & 0 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Nodal point numbers for individual tetrehedron elements are listed as

$$
\text { tetrahedra }=\left[\begin{array}{cccc}
1 & 2 & 3 & 5 \\
3 & 4 & 1 & 5
\end{array}\right]
$$

which implies that $\diamond_{1}=\diamond \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{5}$ and $\diamond_{2}=\diamond \mathrm{P}_{3} \mathrm{P}_{4} \mathrm{P}_{1} \mathrm{P}_{5}$. The quadrangular pyramid is then given by

```
elastic = Body(5, points, 2, tetrahedra);
```

followed by methods to define physical parameters and calculate inertia and stiffness matrices.

Problems

1. Show eqs. (2.1.3a)(2.1.3b) (2.1.3c).
2. Calculate partial derivatives of piecewise linear approximation $L_{i, j, k}(x, y)$ given in eq. (2.1.4) with respect to x, y.
3. Calculate partial derivatives of piecewise linear approximation $L_{i, j, k, l}(x, y, z)$ given in eq. (2.1.6) with respect to x, y, z.
4. Show the following equations:

$$
\begin{aligned}
& \int_{x_{i}}^{x_{j}} N_{i, j}(x) N_{i, j}(x) \mathrm{d} x=\int_{x_{i}}^{x_{j}} N_{j, i}(x) N_{j, i}(x) \mathrm{d} x=\frac{1}{3}\left(x_{j}-x_{i}\right) \\
& \int_{x_{i}}^{x_{j}} N_{i, j}(x) N_{j, i}(x) \mathrm{d} x=\int_{x_{i}}^{x_{j}} N_{j, i}(x) N_{i, j}(x) \mathrm{d} x=\frac{1}{6}\left(x_{j}-x_{i}\right)
\end{aligned}
$$

Letting $L_{i, j}(x)=f_{i} N_{i, j}(x)+f_{j} N_{j, i}(x)$, show

$$
\int_{x_{i}}^{x_{j}}\left\{L_{i, j}(x)\right\}^{2} \mathrm{~d} x=\left[\begin{array}{cc}
f_{i} & f_{j}
\end{array}\right] \frac{x_{j}-x_{i}}{6}\left[\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{c}
f_{i} \\
f_{j}
\end{array}\right]
$$

5. Show the following equations:

$$
\begin{aligned}
& \int_{x_{i}}^{x_{j}} N_{i, j}^{\prime}(x) N_{i, j}^{\prime}(x) \mathrm{d} x=\int_{x_{i}}^{x_{j}} N_{j, i}^{\prime}(x) N_{j, i}^{\prime}(x) \mathrm{d} x=\frac{1}{x_{j}-x_{i}} \\
& \int_{x_{i}}^{x_{j}} N_{i, j}^{\prime}(x) N_{j, i}^{\prime}(x) \mathrm{d} x=\int_{x_{i}}^{x_{j}} N_{j, i}^{\prime}(x) N_{i, j}^{\prime}(x) \mathrm{d} x=\frac{-1}{x_{j}-x_{i}}
\end{aligned}
$$

Letting $L_{i, j}(x)=f_{i} N_{i, j}(x)+f_{j} N_{j, i}(x)$, show

$$
\int_{x_{i}}^{x_{j}}\left\{L_{i, j}^{\prime}(x)\right\}^{2} \mathrm{~d} x=\left[\begin{array}{ll}
f_{i} & f_{j}
\end{array}\right] \frac{1}{x_{j}-x_{i}}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
f_{i} \\
f_{j}
\end{array}\right]
$$

6. Show the following equations:

$$
\begin{aligned}
& \int_{\triangle} N_{i, j, k}^{2} \mathrm{~d} S=\int_{\triangle} N_{j, k, i}^{2} \mathrm{~d} S=\int_{\triangle} N_{k, i, j}^{2} \mathrm{~d} S=\frac{\triangle}{6} \\
& \int_{\triangle} N_{i, j, k} N_{j, k, i} \mathrm{~d} S=\int_{\triangle} N_{j, k, i} N_{k, i, j} \mathrm{~d} S=\int_{\triangle} N_{k, i, j} N_{i, j, k} \mathrm{~d} S=\frac{\triangle}{12}
\end{aligned}
$$

where $\triangle=\triangle \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k}$.
7. Show eq. (2.3.13).
8. Show the following equations:

$$
\begin{aligned}
& \int_{\diamond} N_{i, j, k, l}^{2} \mathrm{~d} V=\cdots=\frac{\diamond}{10} \\
& \int_{\diamond} N_{i, j, k, l} N_{j, k, l, i} \mathrm{~d} V=\cdots=\frac{\diamond}{20}
\end{aligned}
$$

where $\diamond=\diamond \mathrm{P}_{i} \mathrm{P}_{j} \mathrm{P}_{k} \mathrm{P}_{l}$.

