
Chapter 2

Finite Element Approximation

2.1 Piecewise linear approximation

One-dimensional piecewise linear approximation Let us approximate one-dimensional
function f(x) over region PiPj in one-dimensional space. The function takes values fi, fj
at points Pi, Pj . Let xi, xj be coordinates of points Pi, Pj . Let P be any point of which
coordinate is given by x. Let us introduce the following two functions

Ni,j(x) =
PPj

PiPj
=

xj − x

xj − xi
(2.1.1a)

Nj,i(x) =
PiP

PiPj
=

x− xi

xj − xi
(2.1.1b)

Noting that

Ni,j(x) =

{
1 x = xi

0 x = xj
, Nj,i(x) =

{
0 x = xi

1 x = xj

linear approximation of function f(x) over region PiPj is described as follows:

Li,j(x) = fi Ni,j(x) + fj Nj,i(x). (2.1.2)

This function is linear since both Ni,j(x) and Nj,i(x) are linear. Also, this function satisfies

Li,j(xi) = fi Ni,j(xi) + fj Nj,i(xi) = fi

Li,j(xj) = fi Ni,j(xj) + fj Nj,i(xj) = fj

concluding that function Li,j(x) provides one-dimensional approximation over PiPj .

Two-dimensional piecewise linear approximation Let us approximate two-dimensional
functoin f(x, y) over triangle region △PiPjPk in two-dimensional space. The function takes
values fi, fj , fk at points Pi, Pj , Pk. Let (xi, yi) be coordinates of point Pi, (xj , yj) be
coordinates of point Pj , and (xk, yk) be coordinates of point Pk. Let P(x, y) be any point of
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which coordinate is given by (x, y). Let us introduce the following three functions

Ni,j,k(x, y) =
△PPjPk

△PiPjPk
=

(yj − yk)x− (xj − xk)y + (xjyk − xkyj)

2△PiPjPk
(2.1.3a)

Nj,k,i(x, y) =
△PiPPk

△PiPjPk
=

(yk − yi)x− (xk − xi)y + (xkyi − xiyk)

2△PiPjPk
(2.1.3b)

Nk,i,j(x, y) =
△PiPjP

△PiPjPk
=

(yi − yj)x− (xi − xj)y + (xiyj − xjyi)

2△PiPjPk
(2.1.3c)

where

2△PiPjPk = (xiyj − xjyi) + (xjyk − xkyj) + (xkyi − xiyk).

Noting that

Ni,j,k(x, y) =

{
1 at Pi

0 at Pj , Pk

Nj,k,i(x, y) =

{
1 at Pj

0 at Pk, Pi

Nk,i,j(x, y) =

{
1 at Pk

0 at Pi, Pj

linear approximation of f(x, y) over region △PiPjPk is described as follows:

Li,j,k(x, y) = fi Ni,j,k(x, y) + fj Nj,k,i(x, y) + fk Nk,i,j(x, y) (2.1.4)

This function is linear since Ni,j,k(x, y), Nj,k,i(x, y), and Nk,i,j(x, y) are linear. Also, this
function satisfies

Li,j,k(xi, yi) = fi, Li,j,k(xj , yj) = fj , Li,j,k(xk, yk) = fk

concluding that function Li,j,k(x, y) provides two-dimensional approximation over triangle
region △PiPjPk.

Three-dimensional piecewise linear approximation Let us approximate three-dimensional
function f(x, y, z) over tetrahedron region ♢PiPjPkPl in three-dimensional space. The func-
tion takes values fi, fj , fk, fl at points Pi, Pj , Pk, Pl. Let (xi, yi, zi) be coordinates of
point Pi, (xj , yj , zj) be coordinates of point Pj , (xk, yk, zk) be coordinates of point Pk, and
(xl, yl, zl) be coordinates of point Pl. Let P(x, y, z) be any point of which coordinate is given
by (x, y, z). Let us introduce the following four functions

Ni,j,k,l(x, y, z) =
♢PPjPkPl

♢PiPjPkPl
(2.1.5a)

Nj,k,l,i(x, y, z) =
♢PiPPkPl

♢PiPjPkPl
(2.1.5b)

Nk,l,i,j(x, y, z) =
♢PiPiPPl

♢PiPjPkPl
(2.1.5c)

Nl,i,j,k(x, y, z) =
♢PiPiPkP

♢PiPjPkPl
(2.1.5d)

Then, linear approximation of f(x, y, z) over region ♢PiPjPkPl is described as follows:

Li,j,k,l(x, y, z) = fiNi,j,k,l(x, y, z)+fjNj,k,l,i(x, y, z)+fkNk,l,i,j(x, y, z)+flNl,i,j,k(x, y, z)
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(2.1.6)

This function Li,j,k,l(x, y, z) provides three-dimensional approximation over tetrahedron re-
gion ♢PiPjPkPl.

2.2 One-dimensional finite element approximation

Strain potential and kinetic energies are formulated as integral forms over one-, two-, or
three-dimensional regions. It is difficult or impossible to analytically calculate such integrals.
Finite element approximation provides methods to calculate the integrals numerically. Finite
element approximation employs divide-and-conquer approach, which is outlined as follows:

Step 1 Obtain integral form with respect to unknown functions.
Step 2 Divide the integral into a finite number of integrals over small regions.
Step 3 Approximate unknown functions to calculate integrals over small regions.
Step 4 Sum up the calculated integrals over small regions.

Recall that strain potential energy of a one-dimensional soft robot is given by eq. (1.5.3), that
is:

U =

∫ L

0

1

2
Eε2A dx =

∫ L

0

1

2
EA

(
∂u

∂x

)2

dx (2.2.1)

This integral U includes one unknown function u(x), which should be obtained. The above
integral over region [ 0, L ] can be divided into, for example, integrals over four small regions:∫ L

0

=

∫ x2

x1

+

∫ x3

x2

+

∫ x4

x3

+

∫ x5

x4

Applying piecewise linear approximation, we analytically or numerically calculate individual
integrals over small regions, resulting that we can obtain integral U .

Finite element approximation of strain potential energy Let us detail the above
procedure. Divide region [ 0, L ] into a finite number of small regions. Here we divide the
region into four equal regions. Width of the small regions is h = L/4. End points of small
regions are referred to as nodal points. Here we have five nodal points. Let us describe the
nodal points as x1 = 0, x2 = h, x3 = 2h, · · · , x5 = L. Dividing integral interval [ 0, L ] into
small regions, we have

U =

∫ x2

x1

1

2
EA

(
du

dx

)2

dx+

∫ x3

x2

1

2
EA

(
du

dx

)2

dx+ · · ·+
∫ x5

x4

1

2
EA

(
du

dx

)2

dx. (2.2.2)

We apply piecewise linear approximation (eq. (2.1.2)) to function u(x) over small region [xi,
xj ]. Piecewise linear approximation of the function is described as follows:

u(x) = ui Ni,j(x) + uj Nj,i(x), x ∈ [xi, xj ] (2.2.3)

where ui, uj represent displacements at nodal points P(xi), P(xj). Through this approxima-
tion, function u(x) can be described by five parameters u1, u2, · · · , u5.

Let us substitute the above piecewise linear approximation into individual integrals over
small regions. For sake of simplicity, assume that Young’s modulus E and cross-sectional
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area A are constants. Substituting piecewise linear approximation given in eq. (2.2.3) into
integral over small region [xi, xj ], we have∫ xj

xi

1

2
EA

(
du

dx

)2

dx =
1

2

[
ui uj

] EA

h

[
1 −1
−1 1

] [
ui

uj

]
(see Problem 5 in Chapter 2). Consequently, we have

U =
1

2

[
u1 u2

] EA

h

[
1 −1
−1 1

] [
u1

u2

]
+

1

2

[
u2 u3

] EA

h

[
1 −1
−1 1

] [
u2

u3

]
+ · · ·

+
1

2

[
u4 u5

] EA

h

[
1 −1
−1 1

] [
u4

u5

]
which directly yields

U =
1

2

[
u1 u2 u3 u4 u5

] EA

h


1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1




u1

u2

u3

u4

u5

 .

Introducing nodal displacement vector

uN =


u1

u2

u3

u4

u5

 (2.2.4)

and stiffness matrix

K =
EA

h


1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1

 , (2.2.5)

strain potential energy is described by the following quadratic form:

U =
1

2
u⊤
N K uN. (2.2.6)

Note that K is a band matrix.
Let us calculate strain potential energy of a one-dimensional soft robot with non-uniform

cross-sectional area. Let function A(x) denote the cross-sectional area at P(x). Assume that
Young’s modulus E is constant. Recalling that du/dx takes a constant value (−ui + uj)/h
in small region [xi, xj ], strain potential energy over the region is given as∫ xj

xi

1

2
EA(x)

(
du

dx

)2

dx =
1

2
E

(
−ui + uj

h

)2 ∫ xj

xi

A(x) dx

=
1

2

[
ui uj

] E
h2

[
Vi,j −Vi,j

−Vi,j Vi,j

] [
ui

uj

]
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where

Vi,j =

∫ xj

xi

A(x) dx (2.2.7)

represents the volume of the three-dimensional region specified by small region [xi, xj ].
Thus, when region [ 0, L ] is divided into four small regions, stiffness matrix is described as
follows:

K =
E

h2


V1,2 −V1,2

−V1,2 V1,2 + V2,3 −V2,3

−V2,3 V2,3 + V3,4 −V3,4

−V3,4 V3,4 + V4,5 −V4,5

−V4,5 V4,5

 . (2.2.8)

This matrix K is also a band matrix.
Let us reformulate the above calculation. Assume again that Young’s modulus E and

cross-sectional area A are constants. Potential energy stored in region [xi, xj ] is given by

Ui,j =
1

2

[
xi xj

]
Ki,j

[
xi

xj

]
(2.2.9)

where

Ki,j =
EA

h

[
1 −1
−1 1

]
(2.2.10)

We obtain stiffness matrix K (eq. (2.2.5)) by synthesizing matrices K1,2, K2,3, K3,4, and
K4,5. Let us introduce operator ⊕ to describe this synthesizing:

K = K1,2 ⊕K2,3 ⊕K3,4 ⊕K4,5 (2.2.11)

This equation implies that summing up all contributions of K1,2 through K4,5 yields stiffness
matrix K. Note that

(1, 1)-th element of Ki,j contributes to (i, i)-th element of K,
(1, 2)-th element of Ki,j contributes to (i, j)-th element of K,
(2, 1)-th element of Ki,j contributes to (j, i)-th element of K,

(2, 2)-th element of Ki,j contributes to (j, j)-th element of K.

We simply describe these contributions as

(1, 2)× (1, 2) elements of Ki,j contribute to (i, j)× (i, j) elements of K.

Namely, operator × denotes direct product: (1, 2) × (1, 2) implies (1, 1), (1, 2), (2, 1), (2, 2)
while (i, j)× (i, j) implies (i, i), (i, j), (j, i), (j, j).

Finite element approximation of kinetic energy Let us calculate kinetic energy of a
one-dimensional soft robot given by eq. (1.6.2), that is:

T =

∫ L

0

1

2
ρA

(
∂u

∂t

)2

dx =

∫ L

0

1

2
ρAu̇2 dx (2.2.12)

For sake of simplicity, assume that density ρ and cross-sectional area A are constants. Di-
viding integral region [ 0, L ] into four equal regions, we have

T =

∫ x2

x1

1

2
ρAu̇2dx+

∫ x3

x2

1

2
ρAu̇2dx+ · · ·+

∫ x5

x4

1

2
ρAu̇2dx (2.2.13)
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Piecewise linear approximation of function u(x, t) over small region [xi, xj ] is described as
follows:

u(x, t) = ui(t)Ni,j(x) + uj(t)Nj,i(x), x ∈ [xi, xj ] (2.2.14)

Note that ui, uj depend on time t whereas functions Ni,j(x), Nj,i(x) are not. Differentiating
the above equation with respect time t yields

u̇(x, t) = u̇i(t)Ni,j(x) + u̇j(t)Nj,i(x), x ∈ [xi, xj ] (2.2.15)

Applying the above equation into integral over small region [xi, xj ], we have∫ xj

xi

1

2
ρAu̇2dx =

1

2

[
u̇i u̇j

]
ρAh

[
1/3 1/6
1/6 1/3

] [
u̇i

u̇j

]
(see Problem 4 in Chapter 2). Consequently,

T =
1

2

[
u̇1 u̇2

]
ρAh

[
1/3 1/6
1/6 1/3

] [
u̇1

u̇2

]
+

1

2

[
u̇2 u̇3

]
ρAh

[
1/3 1/6
1/6 1/3

] [
u̇2

u̇3

]
+ · · ·

+
1

2

[
u̇4 u̇5

]
ρAh

[
1/3 1/6
1/6 1/3

] [
u̇4

u̇5

]
which directly yields

T =
1

2
u̇N

⊤M u̇N (2.2.16)

where u̇N = [ u̇1, u̇2, · · · , u̇5 ]
⊤ and

M = ρAh · 1
6


2 1
1 4 1

1 4 1
1 4 1

1 2

 (2.2.17)

Matrix M is referred to as a inertia matrix. Note that M is a band matrix. Sum of all
elements of M coincides with the total mass, implying that the inertia matrix defines its
distribution. The above calculation is simply described as

M = M1,2 ⊕M2,3 ⊕M3,4 ⊕M4,5 (2.2.18)

where

Mi,j =
ρAh

6

[
2 1
1 2

]
(2.2.19)

denotes a partial inertia matrix corresponding to region [xi, xj ].
Let us calculate kinetic energy of a one-dimensional soft robot with non-uniform cross-

sectional area. Let function A(x) denote the cross-sectional area at P(x). Assume that
density ρ is constant. Kinetic energy over small region [xi, xj ] is then given by∫ xj

xi

1

2
ρAu̇2dx =

1

2

[
u̇i u̇j

]
ρ

[
V̄ i,i
i,j V̄ i,j

i,j

V̄ i,j
i,j V̄ j,j

i,j

][
u̇i

u̇j

]
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(a) region S (b) cover by triangles

Figure 2.1: Approximation of two-dimensional region

where

V̄ i,i
i,j =

∫ xj

xi

A(x){Ni,j(x)}2dx, V̄ j,j
i,j =

∫ xj

xi

A(x){Nj,i(x)}2dx,

V̄ i,j
i,j =

∫ xj

xi

A(x)Ni,j(x)Nj,i(x) dx

Thus, when region [ 0, L ] is divided into four small regions, inertia matrix is described as
follows:

M = ρ


V̄ 1,1
1,2 V̄ 1,2

1,2

V̄ 1,2
1,2 V̄ 2,2

1,2 + V̄ 2,2
2,3 V̄ 2,3

2,3

V̄ 2,3
2,3 V̄ 3,3

2,3 + V̄ 3,3
3,4 V̄ 3,4

3,4

V̄ 3,4
3,4 V̄ 4,4

3,4 + V̄ 4,4
4,5 V̄ 4,5

4,5

V̄ 4,5
4,5 V̄ 5,5

4,5

 .

This matrix M is also a band matrix. Note that V̄ i,i
i,j + V̄ j,j

i,j +2V̄ i,j
i,j = Vi,j , implying that the

inertia matrix defines the distribution of the total mass.

2.3 Two-dimensional finite element approximation

Strain potential energy and kinetic energy of a two-dimensional soft robot are formulated
by integrals over two-dimensional region S, which is often described by an irregular shape,
making analytical calculation of integrals difficult or impossible. Let us approximate two-
dimensional region S (Fig. 2.1(a)) by a set of small triangles (Fig. 2.1(b)). Then, integral over
two-dimensional region S can be approximated by the sum of integrals over small triangles:∫

S

≈
∑

△PiPjPk

∫
△PiPjPk

Here we apply piecewise linear approximation to individual integrals over small triangles so
that we can analytically or numerically calculate the integrals.

Finite element approximation of kinetic energy Let us calculate kinetic energy of a
two-dimensional soft robot given by eq. (1.6.4), that is:

T =

∫
S

1

2
ρ u̇⊤u̇ h dS (2.3.1)
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P3P2P1

P6P5P4

1

1 1

Figure 2.2: Example of rectangle region

First, we calculate integral over triangle region △PiPjPk:

Ti,j,k =

∫
△PiPjPk

1

2
ρ u̇⊤u̇ h dS (2.3.2)

Piecewise linear approximation of function u over triangle region △PiPjPk is described as
follows:

u = ui Ni,j,k + uj Nj,k,i + uk Nk,i,j . (2.3.3)

Noting that ui, uj , uk depend on time while Ni,j,k, Nj,k,i, Nk,i,j do not, we have

u̇ = u̇i Ni,j,k + u̇j Nj,k,i + u̇k Nk,i,j (2.3.4)

which directly yields

u̇⊤u̇ =

[
u̇⊤
i u̇⊤

j u̇⊤
k

]  {Ni,j,k}2I2×2 Ni,j,kNj,k,iI2×2 Ni,j,kNk,i,jI2×2

Ni,j,kNj,k,iI2×2 {Nj,k,i}2I2×2 Nj,k,iNk,i,jI2×2

Ni,j,kNk,i,jI2×2 Nj,k,iNk,i,jI2×2 {Nk,i,j}2I2×2

 u̇i

u̇j

u̇k


where I2×2 represents 2 × 2 identical matrix. For sake of simplicity, assume that density ρ
and thickness h are constants. Then,

Ti,j,k =
1

2

[
u̇⊤
i u̇⊤

j u̇⊤
k

]
ρh

 (△/6)I2×2 (△/12)I2×2 (△/12)I2×2

(△/12)I2×2 (△/6)I2×2 (△/12)I2×2

(△/12)I2×2 (△/12)I2×2 (△/6)I2×2

 u̇i

u̇j

u̇k


=

1

2

[
u̇⊤
i u̇⊤

j u̇⊤
k

] ρh△
12

 2I2×2 I2×2 I2×2

I2×2 2I2×2 I2×2

I2×2 I2×2 2I2×2

 u̇i

u̇j

u̇k

 (2.3.5)

where △ = △PiPjPk (see Problem 6). Matrix

Mi,j,k =
ρh△
12

 2I2×2 I2×2 I2×2

I2×2 2I2×2 I2×2

I2×2 I2×2 2I2×2

 (2.3.6)

is referred to as partial inertia matrix. Note that the sum of all blocks of matrix Mi,j,k is
equal to ρh△ I2×2, which denotes the mass of this triangular element.

Let us calculate the total kinetic energy over rectangle region □P1P3P6P4 shown in
Fig. 2.2. This region consists of four triangle regions: △P1P2P4, △P2P3P5, △P5P4P2, and
△P6P5P3. For sake of simplicity, assume that ρh△/12 is constantly equal to 1. Then, partial
inertia matrices are given as

M1,2,4 = M2,3,5 = M5,4,2 = M6,5,3 =

 2I2×2 I2×2 I2×2

I2×2 2I2×2 I2×2

I2×2 I2×2 2I2×2

 .
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Let uN be a collective vector consisting of all displacement vectors at nodal points:

uN =


u1

u2

...
u6

 (2.3.7)

which is referred to as nodal displacement vector. The total kinetic energy is then described
by a quadratic form with respect to u̇N:

T =
1

2
u̇⊤
N M u̇N,

where M is referred to as inertia matrix. Noting that

(1, 2, 3)× (1, 2, 3) blocks of M1,2,4 contribute to (1, 2, 4)× (1, 2, 4) blocks of M ,

namely,

(1, 1), (1, 2), (1, 3) blocks of M1,2,4 contribute to (1, 1), (1, 2), (1, 4) blocks of M ,

(2, 1), (2, 2), (2, 3) blocks of M1,2,4 contribute to (2, 1), (2, 2), (2, 4) blocks of M ,

(3, 1), (3, 2), (3, 3) blocks of M1,2,4 contribute to (4, 1), (4, 2), (4, 4) blocks of M ,

we find contribution of M1,2,4 to M as follows:

2I2×2 I2×2 I2×2

I2×2 2I2×2 I2×2

I2×2 I2×2 2I2×2

 .

Similarly,

(1, 2, 3)× (1, 2, 3) blocks of M5,4,2 contribute to (5, 4, 2)× (5, 4, 2) blocks of M ,

namely,

(1, 1), (1, 2), (1, 3) blocks of M5,4,2 contribute to (5, 5), (5, 4), (5, 2) blocks of M ,

(2, 1), (2, 2), (2, 3) blocks of M5,4,2 contribute to (4, 5), (4, 4), (4, 2) blocks of M ,

(3, 1), (3, 2), (3, 3) blocks of M5,4,2 contribute to (2, 5), (2, 4), (2, 2) blocks of M ,

we find contribution of M5,4,2 to M as follows:

2I2×2 I2×2 I2×2

I2×2 2I2×2 I2×2

I2×2 I2×2 2I2×2


.
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Summing up all contributions, we finally have

M =


2I2×2 I2×2 I2×2

I2×2 6I2×2 I2×2 2I2×2 2I2×2

I2×2 4I2×2 2I2×2 I2×2

I2×2 2I2×2 4I2×2 I2×2

2I2×2 2I2×2 I2×2 6I2×2 I2×2

I2×2 I2×2 2I2×2

 .

This inertia matrix M consists of 62 2× 2 blocks and is a sparse matrix. We simply describe
the above calculation as

M = M1,2,4 ⊕M2,3,5 ⊕M5,4,2 ⊕M6,5,3. (2.3.8)

Operator ⊕ works block-wise. In general, inertia matrix is described as

M =
⊕
i,j,k

Mi,j,k (2.3.9)

where i, j, k represent nodal point numbers of each triangle.

Finite element approximation of strain potential energy We apply the above cal-
culation to strain potential energy. First, let us calculate strain potential energy stored in
small triangle region △PiPjPk:

Ui,j,k =

∫
△PiPjPk

1

2
ε⊤(λIλ + µIµ)ε h dS. (2.3.10)

Piecewise linear approximation of function u over triangle region △PiPjPk is described as
u = ui Ni,j,k + uj Nj,k,i + uk Nk,i,j . Introducing collective vectors γu = [ui, uj , uk ]

⊤ and
γv = [ vi, vj , vk ]

⊤, we find

∂u

∂x
= a⊤γu,

∂u

∂y
= b⊤γu,

∂v

∂x
= a⊤γv,

∂v

∂y
= b⊤γv

where

a =
1

2△

 yj − yk
yk − yi
yi − yj

 , b =
−1

2△

 xj − xk

xk − xi

xi − xj

 (2.3.11)

(see Problem 2). Then, strain vector is given as

ε =

 a⊤γu

b⊤γv

b⊤γu + a⊤γv

 (2.3.12)

Substituting the above equation into eq. (2.3.10), we have

Ui,j,k =
1

2

[
γ⊤
u γ⊤

v

]
λ

[
aa⊤ ab⊤

ba⊤ bb⊤

]
h△

[
γu

γv

]
+

1

2

[
γ⊤
u γ⊤

v

]
µ

[
2aa⊤ + bb⊤ ba⊤

ab⊤ 2bb⊤ + aa⊤

]
h△

[
γu

γv

]
(2.3.13)
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(see Problem 7). Then, we have

Ui,j,k =
1

2
γ⊤ (λHλ + µHµ) γ (2.3.14)

where

γ =

[
γu

γv

]
, Hλ =

[
aa⊤ ab⊤

ba⊤ bb⊤

]
h△,

Hµ =

[
2aa⊤ + bb⊤ ba⊤

ab⊤ 2bb⊤ + aa⊤

]
h△.

The above equation is a quadratic form with respect to γ = [ui, uj , uk, vi, vj , vk ]
⊤. Let

us permutate rows and columns of Hλ and Hµ so that Ui,j,k is described by a quadratic
form with respect to ui,j,k = [ui, vi, uj , vj , uk, vk ]

⊤. Namely, let 1, 4, 2, 5, 3, 6 rows and

columns of Hλ be 1, 2, 3, 4, 5, 6 rows and columns of J i,j,k
λ . Similarly, let 1, 4, 2, 5, 3, 6 rows

and columns of Hµ be 1, 2, 3, 4, 5, 6 rows and columns of J i,j,k
µ . Then, we have

γ⊤Hλγ = u⊤
i,j,k J i,j,k

λ ui,j,k, γ⊤Hµγ = u⊤
i,j,k J i,j,k

µ ui,j,k

Matrices J i,j,k
λ and J i,j,k

µ are referred to as partial connection matrices. Once coordinates of

Pi, Pj , Pk are given, we can calculate partial connection matrices J i,j,k
λ and J i,j,k

µ .
Finally, we find strain potential energy stored in △PiPjPk:

Ui,j,k =
1

2
u⊤
i,j,k Ki,j,k ui,j,k (2.3.15)

where

Ki,j,k = λJ i,j,k
λ + µJ i,j,k

µ (2.3.16)

is referred to as partial stiffness matrix.
Summing up all strain potential energies over small triangle regions, we obtain the total

strain potential energy described as

U =
1

2
u⊤
N K uN (2.3.17)

where

K =
⊕
i,j,k

Ki,j,k (2.3.18)

is referred to as stiffness matrix. Assuming that Lamé’s constants λ and µ are uniform over
the region, stiffness matrix is described as

K =
⊕
i,j,k

(λJ i,j,k
λ + µJ i,j,k

µ ) = λ
⊕
i,j,k

J i,j,k
λ + µ

⊕
i,j,k

J i,j,k
µ

which directly yields

K = λJλ + µJµ (2.3.19)

where

Jλ =
⊕
i,j,k

J i,j,k
λ , Jµ =

⊕
i,j,k

J i,j,k
µ

are referred to as connection matrices.
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Example Let us calculate partial connection matrices of triangle P1P2P4 shown in Fig. 2.2.
Vectors a, b are given by a = [−1, 1, 0 ]⊤ and b = [−1, 0, 1 ]⊤. Assuming h = 2, we have

Hλ =


1 −1 0 1 0 −1
−1 1 0 −1 0 1
0 0 0 0 0 0
1 −1 0 1 0 −1
0 0 0 0 0 0
−1 1 0 −1 0 1

 , Hµ =


3 −2 −1 1 −1 0
−2 2 0 0 0 0
−1 0 1 −1 1 0
1 0 −1 3 −1 −2
−1 0 1 −1 1 0
0 0 0 −2 0 2


Permuting rows and columns of the above matrices, we find

J1,2,4
λ =


1 1 −1 0 0 −1
1 1 −1 0 0 −1

−1 −1 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

−1 −1 1 0 0 1



J1,2,4
µ =


3 1 −2 −1 −1 0
1 3 0 −1 −1 −2

−2 0 2 0 0 0
−1 −1 0 1 1 0
−1 −1 0 1 1 0
0 −2 0 0 0 2


Let us calculate partial connection matrices of triangle P5P4P2 shown in Fig. 2.2. Vectors
a, b are given by a = [−1, 1, 0 ]⊤ and b = [−1, 0, 1 ]⊤. Thus, assuming h = 2, we find
J5,4,2
λ = J1,2,4

λ and J5,4,2
µ = J1,2,4

µ . Partial connection matrices are invariant with respect to
translation displacement. As a result, under the same assumption, we have

J1,2,4
λ = J2,3,5

λ = J5,4,2
λ = J6,5,3

λ , J1,2,4
µ = J2,3,5

µ = J5,4,2
µ = J6,5,3

µ

Let us calculate connection matrices Jλ and Jµ of rectangle region □P1P3P6P4 shown in
Fig. 2.2. Noting that

(1, 2, 3)× (1, 2, 3) blocks of J1,2,4
λ contribute to (1, 2, 4)× (1, 2, 4) blocks of Jλ,

namely,

(1, 1), (1, 2), (1, 3) blocks of J1,2,4
λ contribute to (1, 1), (1, 2), (1, 4) blocks of Jλ,

(2, 1), (2, 2), (2, 3) blocks of J1,2,4
λ contribute to (2, 1), (2, 2), (2, 4) blocks of Jλ,

(3, 1), (3, 2), (3, 3) blocks of J1,2,4
λ contribute to (4, 1), (4, 2), (4, 4) blocks of Jλ,

we obtain contribution of J1,2,4
λ to Jλ. Noting that

(1, 2, 3)× (1, 2, 3) blocks of J5,4,2
λ contribute to (5, 4, 2)× (5, 4, 2) blocks of Jλ,

namely,

(1, 1), (1, 2), (1, 3) blocks of J5,4,2
λ contribute to (5, 5), (5, 4), (5, 2) blocks of Jλ,

(2, 1), (2, 2), (2, 3) blocks of J5,4,2
λ contribute to (4, 5), (4, 4), (4, 2) blocks of Jλ,

(3, 1), (3, 2), (3, 3) blocks of J5,4,2
λ contribute to (2, 5), (2, 4), (2, 2) blocks of Jλ,
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we obtain contribution of J5,4,2
λ to Jλ. Summing up all contributions, we finally have

Jλ =



1 1 −1 0 0 −1
1 1 −1 0 0 −1

−1 −1 2 1 −1 0 0 1 0 −1
0 0 1 2 −1 0 1 0 −1 −2

−1 −1 1 0 0 1 0 0
0 0 0 1 1 0 −1 −1

0 0 0 1 1 0 −1 −1
−1 −1 1 0 0 1 0 0

0 −1 0 1 −1 0 2 1 −1 −1
−1 −2 1 0 −1 0 1 2 0 0

0 −1 −1 0 1 1
0 −1 −1 0 1 1


We simply describe the above calculation as

Jλ = J1,2,4
λ ⊕ J2,3,5

λ ⊕ J5,4,2
λ ⊕ J6,5,3

λ . (2.3.20)

Operator ⊕ works block-wise. Similarly, we have

Jµ = J1,2,4
µ ⊕ J2,3,5

µ ⊕ J5,4,2
µ ⊕ J6,5,3

µ , (2.3.21)

which yields

Jµ =



3 1 −2 −1 −1 0
1 3 0 −1 −1 −2

−2 0 6 1 −2 −1 0 1 −2 −1
−1 −1 1 6 0 −1 1 0 −1 −4

−2 0 3 0 0 1 −1 −1
−1 −1 0 3 1 0 0 −2

−1 −1 0 1 3 0 −2 0
0 −2 1 0 0 3 −1 −1

−2 −1 0 1 −2 −1 6 1 −2 0
−1 −4 1 0 0 −1 1 6 −1 −1

−1 0 −2 −1 3 1
−1 −2 0 −1 1 3


Matrices Jλ and Jµ are sparse matrices.

2.4 Three-dimensional finite element approximation

Strain potential energy and kinetic energy of a three-dimensional soft robot are formulated
by integrals over three-dimensional region V , which is often described by an irregular shape,
making analytical calculation of integrals difficult or impossible. Let us approximate three-
dimensional region V by a set of small tetrahedra. Then, integral over three-dimensional
region V can be approximated by the sum of integrals over small tetrahedra:∫

V

≈
∑

♢PiPjPkPl

∫
♢PiPjPkPl

Here we apply piecewise linear approximation so that we can analytically or numerically
calculate individual integrals over small tetrahedra.
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Finite element approximation of kinetic energy Let us calculate kinetic energy over
tetrahedron region ♢PiPjPkPl:

Ti,j,k,l =

∫
♢PiPjPkPl

1

2
ρ u̇⊤u̇ dV (2.4.1)

Piecewise linear approximation of function u over tetrahedron region ♢PiPjPkPl is described
as follows:

u = ui Ni,j,k,l + uj Nj,k,l,i + uk Nk,l,i,j + ul Nl,k,i,j . (2.4.2)

Differentiating the above equation with respect to time t, we have

u̇ = u̇i Ni,j,k,l + u̇j Nj,k,l,i + u̇k Nk,l,i,j + u̇l Nl,k,i,j . (2.4.3)

For sake of simplicity, assume that density ρ is constant. Letting I3×3 represent 3×3 identical
matrix, we have

Ti,j,k,l =
1

2

[
u̇⊤
i u̇⊤

j u̇⊤
k u̇⊤

l

] ρ♢
20


2I3×3 I3×3 I3×3 I3×3

I3×3 2I3×3 I3×3 I3×3

I3×3 I3×3 2I3×3 I3×3

I3×3 I3×3 I3×3 2I3×3




u̇i

u̇j

u̇k

u̇l

 (2.4.4)

where ♢ = ♢PiPjPkPl (see Problem 8). Matrix

Mi,j,k,l =
ρ♢
20


2I3×3 I3×3 I3×3 I3×3

I3×3 2I3×3 I3×3 I3×3

I3×3 I3×3 2I3×3 I3×3

I3×3 I3×3 I3×3 2I3×3

 (2.4.5)

is referred to as partial inertia matrix. Note that the sum of all blocks of matrix Mi,j,k,l is
equal to ρ♢ I3×3, which denotes the mass of this tetrahedron element.

Summing up all kinetic energies over small tetrahedron regions, we obtain the total kinetic
energy described as

T =
1

2
u̇⊤
N M u̇N,

where M is referred to as inertia matrix.

Finite element approximation of strain potential energy We calculate strain po-
tential energy stored in small tetrahedron region ♢PiPjPkPl. Introducing collective vectors
γu = [ui, uj , uk, ul ]

⊤, γv = [ vi, vj , vk, vk ]
⊤, and γw = [wi, wj , wk, wk ]

⊤, we find

∂u

∂x
= a⊤γu,

∂u

∂y
= b⊤γu,

∂u

∂z
= c⊤γu,

∂v

∂x
= a⊤γv,

∂v

∂y
= b⊤γv,

∂v

∂z
= c⊤γv,

∂w

∂x
= a⊤γw,

∂w

∂y
= b⊤γw,

∂w

∂z
= c⊤γw

where

a =
1

6♢


−aj,k,l
ak,l,i

−al,i,j
ai,j,k

 , b =
1

6♢


−bj,k,l
bk,l,i

−bl,i,j
bi,j,k

 , c =
1

6♢


−cj,k,l
ck,l,i

−cl,i,j
ci,j,k
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with

aj,k,l = (yjzk − ykzj) + (ykzl − ylzk) + (ylzj − yjzl)

bj,k,l = (zjxk − zkxj) + (zkxl − zlxk) + (zlxj − zjxl)

cj,k,l = (xjyk − xkyj) + (xkyl − xlyk) + (xlyj − xjyl)

(see Problem 3). Strain vector is given as

ε =


a⊤γu

b⊤γv

c⊤γw

c⊤γv + b⊤γw

a⊤γw + c⊤γu

b⊤γu + a⊤γv

 .

Then, strain potential energy stored in ♢PiPjPkPl is given by

Ui,j,k,l =
1

2
γ⊤ (λHλ + µHµ) γ (2.4.6)

where

γ =

 γu

γv

γw

 , Hλ =

 aa⊤ ab⊤ ac⊤

ba⊤ bb⊤ bc⊤

ca⊤ cb⊤ cc⊤

♢,

Hµ =

 2aa⊤ + bb⊤ + cc⊤ ba⊤ ca⊤

ab⊤ 2bb⊤ + cc⊤ + aa⊤ cb⊤

ac⊤ bc⊤ 2cc⊤ + aa⊤ + bb⊤

♢. (2.4.7)

Let us permutate rows and columns of Hλ and Hµ so that Ui,j,k,l is described by a quadratic
form of ui,j,k,l = [u⊤

i , u
⊤
j , u

⊤
k , u

⊤
l ]⊤. Namely, let 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12 rows

and columns of Hλ be 1 through 12 rows and columns of J i,j,k,l
λ . Similarly, let 1, 5, 9, 2, 6,

10, 3, 7, 11, 4, 8, 12 rows and columns of Hµ be 1 through 12 rows and columns of J i,j,k,l
µ .

Then, we have

γ⊤Hλγ = u⊤
i,j,k,l J

i,j,k,l
λ ui,j,k,l, γ⊤Hµγ = u⊤

i,j,k,l J
i,j,k,l
µ ui,j,k,l.

Matrices J i,j,k,l
λ and J i,j,k,l

µ are referred to as partial connection matrices. Once coordinates

of Pi, Pj , Pk, Pl are given, we can calculate partial connection matrices J i,j,k,l
λ and J i,j,k,l

µ .
Finally, we find strain potential energy stored in ♢PiPjPkPl:

Ui,j,k,l =
1

2
u⊤
i,j,k,l Ki,j,k,l ui,j,k,l (2.4.8)

where

Ki,j,k,l = λJ i,j,k,l
λ + µJ i,j,k,l

µ (2.4.9)

which is referred to as partial stiffness matrix.
Summing up all strain potential energies over small tetrahedron regions, we obtain the

total strain potential energy described as

U =
1

2
u⊤
N K uN (2.4.10)
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P3

P2P1

P5

P4

Figure 2.3: Example of regular quadrangular pyramid

where

K =
⊕
i,j,k,l

Ki,j,k,l (2.4.11)

is referred to as stiffness matrix. Assuming that Lamé’s constants λ and µ are uniform over
the region, stiffness matrix is described as

K = λJλ + µJµ (2.4.12)

where matrices Jλ and Jµ are referred to as connection matrices.
Let us calculate connection matrices of a regular quadrangular pyramid (Fig. 2.3). The

base of the pyramid is square □P1P2P3P4 and the apex of the pyramid is P5. Coordinates
of vertices are given by x1 = [ 0, 0, 0 ]⊤, x2 = [ 2, 0, 0 ]⊤, x3 = [ 2, 2, 0 ]⊤, x4 = [ 0, 2, 0 ]⊤,
and x5 = [ 1, 1, 1 ]⊤. The piramid consists of two tetraheda: ♢P1P2P3P5 and ♢P3P4P1P5.

Partial connection matrices of ♢P1P2P3P5 are as follows:

J1,2,3,5
λ =

1

4



1 0 1 −1 1 0 0 −1 1 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 −1 1 0 0 −1 1 0 0 −2
−1 0 −1 1 −1 0 0 1 −1 0 0 2
1 0 1 −1 1 0 0 −1 1 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 0 −1 1 −1 0 0 1 −1 0 0 2
1 0 1 −1 1 0 0 −1 1 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−2 0 −2 2 −2 0 0 2 −2 0 0 4



J1,2,3,5
µ =

1

4



3 0 1 −2 0 −1 1 0 0 −2 0 0
0 2 0 1 −1 1 −1 1 −1 0 −2 0
1 0 3 0 0 −1 1 0 2 −2 0 −4
−2 1 0 3 −1 0 −1 0 0 0 0 0
0 −1 0 −1 3 0 1 −2 0 0 0 0
−1 1 −1 0 0 2 −1 1 −1 2 −2 0
1 −1 1 −1 1 −1 2 0 0 −2 0 0
0 1 0 0 −2 1 0 3 −1 0 −2 0
0 −1 2 0 0 −1 0 −1 3 0 2 −4
−2 0 −2 0 0 2 −2 0 0 4 0 0
0 −2 0 0 0 −2 0 −2 2 0 4 0
0 0 −4 0 0 0 0 0 −4 0 0 8
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Note that (1, 2, 3, 4) × (1, 2, 3, 4) blocks of J1,2,3,5
λ and J1,2,3,5

µ contribute to (1, 2, 3, 5) ×
(1, 2, 3, 5) blocks of Jλ and Jµ

Partial connection matrices of ♢P3P4P1P5 are as follows:

J3,4,1,5
λ =

1

4



1 0 −1 −1 1 0 0 −1 −1 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 1 −1 0 0 1 1 0 0 −2
−1 0 1 1 −1 0 0 1 1 0 0 −2
1 0 −1 −1 1 0 0 −1 −1 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
−1 0 1 1 −1 0 0 1 1 0 0 −2
−1 0 1 1 −1 0 0 1 1 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
2 0 −2 −2 2 0 0 −2 −2 0 0 4



J3,4,1,5
µ =

1

4



3 0 −1 −2 0 1 1 0 0 −2 0 0
0 2 0 1 −1 −1 −1 1 1 0 −2 0
−1 0 3 0 0 −1 −1 0 2 2 0 −4
−2 1 0 3 −1 0 −1 0 0 0 0 0
0 −1 0 −1 3 0 1 −2 0 0 0 0
1 −1 −1 0 0 2 1 −1 −1 −2 2 0
1 −1 −1 −1 1 1 2 0 0 −2 0 0
0 1 0 0 −2 −1 0 3 1 0 −2 0
0 1 2 0 0 −1 0 1 3 0 −2 −4
−2 0 2 0 0 −2 −2 0 0 4 0 0
0 −2 0 0 0 2 0 −2 −2 0 4 0
0 0 −4 0 0 0 0 0 −4 0 0 8


Note that (1, 2, 3, 4) × (1, 2, 3, 4) blocks of J3,4,1,5

λ and J3,4,1,5
µ contribute to (3, 4, 1, 5) ×

(3, 4, 1, 5) blocks of Jλ and Jµ

Synthesizing the above partial connection matrices yields the following connection matri-
ces:

Jλ =
1

4



1 0 1 −1 1 0 0 −1 1 0 0 0 0 0 −2
0 1 1 0 0 0 −1 0 1 1 −1 0 0 0 −2
1 1 2 −1 1 0 −1 −1 2 1 −1 0 0 0 −4
−1 0 −1 1 −1 0 0 1 −1 0 0 2
1 0 1 −1 1 0 0 −1 1 0 0 −2
0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 1 0 −1 −1 1 0 0 0 2
−1 0 −1 1 −1 0 0 1 −1 0 0 0 0 0 2
1 1 2 −1 1 0 −1 −1 2 1 −1 0 0 0 −4
0 1 1 −1 0 1 1 −1 0 0 0 −2
0 −1 −1 1 0 −1 −1 1 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2 −2 −4 2 −2 0 2 2 −4 −2 2 0 0 0 8
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Jµ =
1

4



5 0 1 −2 0 −1 2 −1 −1 −1 1 1 −4 0 0
0 5 1 1 −1 1 −1 2 −1 0 −2 −1 0 −4 0
1 1 6 0 0 −1 1 1 4 0 0 −1 −2 −2 −8
−2 1 0 3 −1 0 −1 0 0 0 0 0
0 −1 0 −1 3 0 1 −2 0 0 0 0
−1 1 −1 0 0 2 −1 1 −1 2 −2 0
2 −1 1 −1 1 −1 5 0 −1 −2 0 1 −4 0 0
−1 2 1 0 −2 1 0 5 −1 1 −1 −1 0 −4 0
−1 −1 4 0 0 −1 −1 −1 6 0 0 −1 2 2 −8
−1 0 0 −2 1 0 3 −1 0 0 0 0
1 −2 0 0 −1 0 −1 3 0 0 0 0
1 −1 −1 1 −1 −1 0 0 2 −2 2 0
−4 0 −2 0 0 2 −4 0 2 0 0 −2 8 0 0
0 −4 −2 0 0 −2 0 −4 2 0 0 2 0 8 0
0 0 −8 0 0 0 0 0 −8 0 0 0 0 0 16


Since either tetrahedron does not include both P2 and P4, (2, 4) and (4, 2) blocks of the
connection matrices are zero matrices.

2.5 Implementation

Two-dimensional finite element calculation was implemented on MATLAB. Classes Body,
Triangle, and NodalPoint were introduced. Class Body defines a two-dimensional body,
which consists of an array of triangles and an array of nodal points. Class Triangle specifies
a triangle, including three numbers of nodal points. Class NodalPoint defines a nodal point,
including its two coordinates.

For example, rectangle region in Fig. 2.2 consists of 6 nodal points and 4 triangles. Coor-
dinates of individual nodal points are listed as

points =
[
x1 x2 x3 x4 x5 x6

]
=

[
0 1 2 0 1 2
0 0 0 1 1 1

]
Nodal point numbers for individual triangular elements are listed as

triangles =


1 2 4
2 3 5
5 4 2
6 5 3

 ,

which implies that △1 = △P1P2P4, △2 = △P2P3P5, △3 = △P5P4P2, and △4 = △P6P5P3.
The rectangle region is then given by

elastic = Body(6, points, 4, triangles, thickness);

where thickness specifies thickness h of the two-dimensional body.
Instance of class Triangle includes geometric propertices such as nodal point numbers,

area, and thickness as well as physical parameters such as density and Lamé’s constants.
Class Triangle involves the following methods:

partial derivaties calculating partial derivatives ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y
calculate Cauchy strain calculating Cauchy strain in the triangle
partial strain potential energy strain potential energy stored in the triangle
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calculate Green strain calculating Green strain in the triangle
partial strain potential energy Green strain strain energy using Green strain
partial gravitational potential energy gravitational energy stored in the triangle
partial stiffness matrix calculating partial stiffness matrix Ki,j,k

partial inertia matrix calculating partial inertia matrix Mi,j,k

partial gravitational vector calculating partial gravitational vector gi,j,k

Class Body involves the following methods:

total strain potential energy calculating strain energy stored in the body
total strain potential energy Green strain strain energy using Green strain
total gravitational potential energy gravitational energy stored in the body
calculate stiffness matrix calculating stiffness matrix K
calculate inertia matrix calculating inertia matrix M
calculate gravitational vector calculating gravitational vector g
constraint matrix constraint matrix when specified nodal points are fixed
draw draw the shape of the body

Assuming that density ρ and Lamé’s constants λ, µ are uniform over the region, the
following specifies these parameters:

elastic = elastic.mechanical_parameters(rho, lambda, mu);

The following calculates the stiffness and inertia matrices:

elastic = elastic.calculate_stiffness_matrix;

elastic = elastic.calculate_inertia_matrix;

The stiffness and inertia matrices are then referred by

M = elastic.Inertia_Matrix;

K = elastic.Stiffness_Matrix;

which can be applied to static and dynamic calculation of the motion and deformation of a
soft body.

Three-dimensional finite element calculation was implemented on MATLAB. Classes
Body, Tetrahedron, and NodalPoint were introduced. Class Body defines a three-dimensional
body, which consists of an array of tetrahedra and an array of nodal points. Class Tetrahedron
specifies a tetrahedron, including four numbers of nodal points. Class NodalPoint defines a
nodal point, including its three coordinates.

For example, a regular quadrangular pyramid (Fig. 2.3) consists of 5 nodal points and 2
tetrahedra. Coordinates of individual nodal points are listed as

points =
[
x1 x2 x3 x4 x5

]
=

 0 2 2 0 1
0 0 2 2 1
0 0 0 0 1


Nodal point numbers for individual tetrehedron elements are listed as

tetrahedra =

[
1 2 3 5
3 4 1 5

]
,

which implies that ♢1 = ♢P1P2P3P5 and ♢2 = ♢P3P4P1P5. The quadrangular pyramid is
then given by

elastic = Body(5, points, 2, tetrahedra);

followed by methods to define physical parameters and calculate inertia and stiffness matrices.
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Problems

1. Show eqs. (2.1.3a)(2.1.3b)(2.1.3c).

2. Calculate partial derivatives of piecewise linear approximation Li,j,k(x, y) given in
eq. (2.1.4) with respect to x, y.

3. Calculate partial derivatives of piecewise linear approximation Li,j,k,l(x, y, z) given in
eq. (2.1.6) with respect to x, y, z.

4. Show the following equations:∫ xj

xi

Ni,j(x)Ni,j(x) dx =

∫ xj

xi

Nj,i(x)Nj,i(x) dx =
1

3
(xj − xi)∫ xj

xi

Ni,j(x)Nj,i(x) dx =

∫ xj

xi

Nj,i(x)Ni,j(x) dx =
1

6
(xj − xi)

Letting Li,j(x) = fi Ni,j(x) + fj Nj,i(x), show∫ xj

xi

{Li,j(x)}2 dx =
[
fi fj

] xj − xi

6

[
2 1
1 2

] [
fi
fj

]
5. Show the following equations:∫ xj

xi

N ′
i,j(x)N

′
i,j(x) dx =

∫ xj

xi

N ′
j,i(x)N

′
j,i(x) dx =

1

xj − xi∫ xj

xi

N ′
i,j(x)N

′
j,i(x) dx =

∫ xj

xi

N ′
j,i(x)N

′
i,j(x) dx =

−1

xj − xi

Letting Li,j(x) = fi Ni,j(x) + fj Nj,i(x), show∫ xj

xi

{
L′
i,j(x)

}2
dx =

[
fi fj

] 1

xj − xi

[
1 −1
−1 1

] [
fi
fj

]
6. Show the following equations:∫

△
N2

i,j,k dS =

∫
△
N2

j,k,i dS =

∫
△
N2

k,i,j dS =
△
6∫

△
Ni,j,k Nj,k,i dS =

∫
△
Nj,k,i Nk,i,j dS =

∫
△
Nk,i,j Ni,j,k dS =

△
12

where △ = △PiPjPk.

7. Show eq. (2.3.13).

8. Show the following equations:∫
♢
N2

i,j,k,l dV = · · · = ♢
10∫

♢
Ni,j,k,lNj,k,l,i dV = · · · = ♢

20

where ♢ = ♢PiPjPkPl.
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