
Chapter 4

Computing Dynamic
Deformation

4.1 Variational principle in dynamics

Let us calculate the dynamic deformation of an elastic body. We apply variational principle
in dynamics for the calculation. Let T and U be kinetic and potential energies of the body.
External forces applied to the body will deform the body. Let W be work done by external
forces. Geometric constraints imposed on the body causes the deformation of the body. Let
R be a collective vector of geometric constraints. Variational principle in dynamics insists
that a geometrically admissible motion of a holonomic system between two configurations
at specified times is natural if and only if the variation of action integral vanishes for any
variations. This is equivalent to the Lagrange equations of motions. Lagrangian of a system
is defined as

L = T − U +W + λ⊤R (4.1.1)

where λ denote a collective vector consisting of Lagrange multipliers corresponding to indi-
vidual constraints.

In finite element approximation, deformation of an elastic body is described by nodal
displacement vector uN and its time-derivative u̇N, implying that the Lagrangian is a function
of vector uN and u̇N. Lagrange equation of motion and deformation is then described as
follows:

∂L
∂uN

− d

dt

∂L
∂u̇N

= 0 (4.1.2)

A set of constraints R = 0 can be converted into a set of ordinary differential equations
stabilizing the constraints:

R̈+ 2αṘ+ α2R = 0 (4.1.3)

where α is a positive constant. By solving the above two ordinary differential equations, we
can compute dynamic deformation of a body.

Many algorithms for solving a set of ordinary differential equations (ODEs) have been
proposed and available. We can apply such ODE solvers to the above ordinary differential
equations. For example, MATLAB offers ODE solvers such as ode45 and ode15s. Solv-
ing a set of ordinary differential equations, we can obtain uN(t), which sketches dynamic
deformation of a body during a given time period.
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4.2 Dynamic deformation of one-dimensional soft body

Let us formulate the dynamic deformation of an regular-shaped elastic beam of its length L.
Assume that cross-sectional area A, Young’s modulus E, and density ρ are uniform along
the beam, implying that they are constants . Dividing [ 0, L ] into four small regions, kinetic
and strain potential energies of the beam are described as follows:

T =
1

2
u̇⊤
N M u̇N, U =

1

2
u⊤
N K uN

(see eqs. (2.2.16)(2.2.6)), where inertia matrix M is given in eq. (2.2.17) and stiffness matrix
K is described in eq. (2.2.5). Assume that end point P(0) is fixed to space while an external
force f is applied to end point P(L). Work done by the external force is then described as

W = f⊤uN

where f = [ 0, 0, 0, 0, f ]⊤. Since displacement of point P(0) should be equal to zero, the
following geometric constraint must be satisfied:

R = a⊤uN = 0

where a = [ 1, 0, 0, 0, 0 ]⊤. Consequently, we have the following Lagrangian:

L(u, u̇) = 1

2
u̇⊤
N M u̇N − 1

2
u⊤
N K uN + f⊤uN + λaa

⊤uN = 0 (4.2.1)

where λa is a Lagrange multiplier corresponding to a single constraint a⊤uN = 0. Since M
and K are constant matrices, we have

∂L
∂uN

= −KuN + f + λaa,
∂L
∂u̇N

= M u̇N

which directly yields

−KuN + f + λaa−M üN = 0 (4.2.2)

Equation for stabilizing constraint a⊤uN = 0 is given by

a⊤üN + 2αa⊤u̇N + α2a⊤uN = 0 (4.2.3)

where α is a positive constant. Introducing vN = u̇N, the above two ordinary differential
equations turn into

M v̇N − aλa = −KuN + f

−a⊤v̇N = 2αa⊤vN + α2a⊤uN

Combining the above two equations, we have[
M −a

−a⊤ 0

] [
v̇N

λa

]
=

[
−KuN + f
C(uN,vN)

]
(4.2.4)

where C(uN,vN) = 2αa⊤vN + α2a⊤uN. Note that the coefficient matrix of the above
equation is constant. Given uN and vN, we can calculate the right-side vector of the above
equation, implying that solving the above linear equation yields v̇N. Consequently, given uN

and vN, we can calculate their time derivatives u̇N and v̇N, which offers a canonical form of
ordinary differential equations. Any ODE solver is available to solve the canonical form of
ordinary differential equations numerically.
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(a) body (b) nodal point position

Figure 4.1: One-dimensional beam jumping

Example Let us calculate the dynamic deformation of an elastic beam of length L. Divide
region [ 0, L ] into five small regions. During time interval [ 0, tpush ], one end P(0) of the
beam is in contact with the floor and a pushing force fpush is applied to the other end P(L)
to shrink the beam. During [ tpush, tend ], the applied force is released. A reaction force
exerts to the contacting end as long as the end is in contact with the floor. Penalty method
is applied to calculate the reaction force. Namely,

reaction force =

{
−kfloor Au(0) u(0) ≤ 0

0 u(0) > 0

Figure 4.1 shows a calculation result with L = 10 cm, A = 2 cm2, E = 50 kPa, c = 0.2 kPa · s,
ρ = 1.0 g/cm3, fpush = 2.0N, tpush = 0.2 s, and kfloor = 0.1MPa/cm. Deformation of the
beam during [ tpush, tend ] and jumping motion during [ tpush, tend ] are calculated properly.

4.3 Dynamic deformation of two-dimensional soft body

Let us formulate the dynamic deformation of a two-dimensional elastic body specified by
S. Assume that Lamé’s constants λ, µ, density ρ, and width h are uniform over the body,
implying that they are constants. Approximating region S by a finite number of triangles and
letting uN be nodal displacement vector, kinetic and strain potential energies are described
as

T =
1

2
u̇⊤
N M u̇N, U =

1

2
u⊤
N K uN

where M denote the inertia matrix and K represent the stiffness matrix. Work done by
external forces can be formulated as

W = f⊤uN

A set of geometric constraints imposed on the body can be described as

R = A⊤uN − b(t) = 0
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where b(t) is a collective vector specifying the position of constrained points at time t.
Consequently, we have the following Lagrangian:

L(uN, u̇N) = T − U +W + λ⊤R

=
1

2
u̇⊤
N M u̇N − 1

2
u⊤
N K uN + f⊤uN + λ⊤(A⊤uN − b(t)), (4.3.1)

where λ is a collective vector of Langrange multipliers corresponding to a set of constraints.
Since M and K are constant matrices, we have

∂L
∂uN

= −KuN + f +Aλ,
∂L
∂u̇N

= M u̇N

which directly yields

−KuN + f +Aλ−M üN = 0 (4.3.2)

Equation for stabilizing constraint AuN = 0 is given by

(A⊤üN − b̈(t)) + 2α(A⊤u̇N − ḃ(t)) + α2(A⊤uN − b(t)) = 0, (4.3.3)

where α is a positive constant. Introducing vN = u̇N, the above two ordinary differential
equations collectively turn into[

M −A
−A⊤

] [
v̇N

λ

]
=

[
−KuN + f
C(uN,vN)

]
(4.3.4)

where

C(uN,vN) = −b̈(t) + 2α(A⊤vN − ḃ(t)) + α2(A⊤uN − b(t)).

The above equation provides a canonical form of ordinary differential equations, which can
be solved numerically by any ODE solver.

Damping forces Let us introduce damping forces caused by viscosity of robot body mate-
rial. Let c be viscous modulus of the material. Linear isotropic viscosity can be characterized
by two constants

λvis =
νc

(1 + ν)(1− 2ν)
, µvis =

c

2(1 + ν)
,

where ν denote Poisson’s ratio. Then, a set of damping forces at nodal points is described
by

−Bu̇N

where

B = λvisJλ + µvisJµ

is referred to as damping matrix. Replacing elastic forces −KuN in eq. (4.3.4) by viscoelastic
forces −KuN −BvN, we can compute the dynamic deformation of a viscoelastic body.
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Figure 4.2: Square body on a floor

Example (deforming body) Let us calculate the dynamic deformation of a two-dimensional
elastic square body of width w shown in Fig. 4.2. Let us divide the square region into 3×3×2
triangles. During time interval [ 0, tpush ], the bottom of the body is fixed to the floor and
edge P14P15 moves downward at a constant velocity vpush. During [ tpush, thold ], the bot-
tom remains fixed and and edge P14P15 keeps its position. During [ thold, tend ], the bottom
remains fixed while P14P15 is released.

During [ 0, tpush ], the following constraints are imposed on the square body:

u1 = u2 = u3 = u4 = 0

u14 = u15 = 0+ vpusht

where vpush = [ 0, −vpush ]
⊤. Matrix

A⊤ =


I · · ·

I · · ·
I · · ·

I · · ·
· · · I
· · · I


1 2 3 4 14 15-th block columns

specifies the nodal point displacements under constraints, that is,

A⊤uN =


u1

u2

u3

u4

u14

u15


A collective vector specifying the position of constrained points at time t is then given by

b(t) = b0 + b1t

where

b0 =


0
0
0
0
0
0

 , b1 =


0
0
0
0

vpush

vpush
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(a) 0.0 s (b) 0.2 s (c) 0.4 s (d) 0.5 s

(e) 1.0 s (f) 1.1 s (g) 1.2 s (h) 1.3 s

(i) 1.4 s (j) 1.5 s (k) 2.0 s (l) 3.0 s

Figure 4.3: Dynamic deformation of an elastic square body (3× 3× 2 triangles)

Noting that ḃ(t) = b1 and b̈(t) = 0, we find

C(uN,vN) = 2α(A⊤vN − b1) + α2(A⊤uN − (b0 + b1t)).

During [ tpush, thold ], we find

b0 =


0
0
0
0

vpushtpush
vpushtpush

 , b1 =


0
0
0
0
0
0


During [ thold, tend ], we have the following constraints:

u1 = u2 = u3 = u4 = 0,

which yields,

A⊤ =


I · · ·

I · · ·
I · · ·

I · · ·
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(a) 0.0 s (b) 0.2 s (c) 0.4 s (d) 0.5 s

(e) 1.0 s (f) 1.1 s (g) 1.2 s (h) 1.3 s

(i) 1.4 s (j) 1.5 s (k) 2.0 s (l) 3.0 s

Figure 4.4: Dynamic deformation of an elastic square body (9× 9× 2 triangles)

b0 =


0
0
0
0

 , b1 =


0
0
0
0

 .

Figure 4.3 shows a snapshot of the computation result with w = 30 cm, h = 1 cm, E =
1.0MPa, c = 40Pa · s, ν = 0.48, ρ = 1.0 g/cm3, tpush = 0.5 s, thold = 1.0 s, and vpush =
16 cm/s. Figure 4.4 shows a snapshot of the computation result under a finer mesh; the
square region consists of 9 × 9 × 2 triangles. These computation results demonstrate that
deformation can be simulated properly. Additionally, computation results depend on mesh.

Penalty method When an elastic body contacts with an obstacle, reaction forces are
applied to nodal points of the body. Penalty method provides a formulation of reaction
forces causes by the contact. In penalty method, nodal points may interfere with obstacles,
but penalty forces are applied to interfering nodal points to dissolve the interference. Let
us introduce a signed distance d(x) to describe an obstacle. Function d(x) is equal to
0 at any point on the surface of the obstacle, negative inside the obstacle, and positive
outside the obstacle. Gradient vector ∇g = [ ∂g/∂x, ∂g/∂y ]⊤ is the outside normal vector
of its magnitude 1. We apply a penalty force to a nodal point inside an obstacle to avoid
mechanical interference between the point and the obstacle. Assume that the penalty force
is given by virtual spring and damper between an interfering nodal point and an obstacle.
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(a) 0.0 s (b) 0.2 s (c) 0.4 s (d) 0.5 s (e) 1.0 s

(f) 1.1 s (g) 1.2 s (h) 1.3 s (i) 1.4 s (j) 1.5 s

Figure 4.5: Jumping of an elastic square body (3× 3× 2 triangles)

(a) 0.0 s (b) 0.2 s (c) 0.4 s (d) 0.5 s (e) 1.0 s

(f) 1.1 s (g) 1.2 s (h) 1.3 s (i) 1.4 s (j) 1.5 s

Figure 4.6: Jumping of an elastic square body (9× 9× 2 triangles)

Noting that the direction of the penalty force is given by gradient vector ∇g, the penalty
force is formulated as

fp =

{
(−Kpd−Bpḋ)∇d d(x) ≤ 0

0 otherwise
(4.3.5)

where Kp denotes contact stiffness coefficient and Bp represents contact damping coefficient.
For example, assume that a floor is described as d(x) = y, that is, the floor region is given

by y ≤ 0 and the floor surface coincides with x-axis. Gradient vector is given by ∇g = [ 0,
1 ]⊤. Noting that position of k-th nodal point Pk is given by [xk + uk, yk + vk ]

⊤, where xk

and yk are independent of time, the penalty force applied to Pk is described as

fp =


[

0

−Kp(yk + vk)−Bpv̇k

]
yk + vk ≤ 0

0 otherwise

(4.3.6)
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(a) 0.0 s (b) 0.2 s (c) 0.4 s (d) 0.5 s (e) 1.0 s

(f) 1.1 s (g) 1.2 s (h) 1.3 s (i) 1.4 s (j) 1.5 s

Figure 4.7: Jumping of an elastic square body (3× 3 rectangular elements)

The above equation provides reaction forces applied to an elastic body from the floor.

Example (jumping body) Let us simulate the jumping of a two-dimensional elastic
square body. Divide the square region into 3 × 3 × 2 triangles (Fig. 4.2). During [ 0, tpush ],
the bottom of the body is fixed to the floor and edge P14P15 moves downward at a constant
velocity vpush. During [ tpush, thold ], the bottom remains fixed and and edge P14P15 keeps
its position. During [ thold, tend ], all constraints are released, but reaction forces are applied
to the body from the floor. We apply penalty method to calculate reaction forces. Figure
4.5 shows a snapshot of the computation result with width w = 30 cm, thickness h = 1 cm,
Young’s modulus E = 1.0MPa, viscous modulus c = 40Pa · s, Poisson’s ratio ν = 0.48, den-
sity ρ = 1.0 g/cm3, tpush = 0.5 s, thold = 1.0 s, vpush = 16 cm/s, contact stiffness coefficient
Kp = 100 N/m, and contact damping coefficient Bp = 0 N/(m/ s). The computed result
demonstrates the jumping of an elastic body but the body rotates during jumping, which
originates from asymmetric triangular mesh. Figure 4.6 shows a snapshot of the computation
result under a finer mesh; the square region consists of 9 × 9 × 2 triangles. In this compu-
tation, contact stiffness coefficient is Kp = 100 N/m× (4/10), since the bottom of the body
includes 10 nodal points whereas 4 nodal points in Figure 4.5. Comparing Figs. 4.5 and 4.6,
we find computation results depend on mesh and finer mesh yields better result.

Example (rectangular elements) Rectangular elements can be applied to computation
of dynamic motion and deformation. Recall that stiffness and inertia matrices of an elastic
body consisting of rectangular elements are formulated in eqs. (3.6.6)(3.6.10) (see Section 3.6).
Applying these matrices to eq. (4.3.4), we can calculate the dynamic motion and deformation
of the body.

Let us simulate the jumping of a two-dimensional elastic square body. Divide the square
region into 3 × 3 rectangular regions. Figure 4.7 shows a snapshot of the computation
result. Note that results based on triangular elements (Figs. 4.5 and 4.6) lost symmetry in
deformation and the body rotated during jumping while the result based on rectangular
elements kept symmetry in deformation and little rotation happened during jumping.

Nodal force vector caused by pressure Pressure applied into a chamber causes dis-
tributed stress along the boundary of the chamber area. Assuming that the increment of the
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(a) 0.0 s (b) 0.1 s (c) 0.2 s (d) 0.3 s (e) 1.5 s

(f) 1.6 s (g) 1.7 s (h) 1.8 s (i) 1.9 s (j) 3.0 s

Figure 4.8: Dynamic expansion of an elastic membrane by air pressure

chamber area is described by a polygon, distributed stress turns into a set of nodal forces at
vertices of the polygon. Let S(uN) be the area of the polygon and p be the applied pressure
at time t. Since work done by the applied pressure is given by ph S(uN), nodal force vector
is described as ph ∂S/∂uN. Then, a set of Lagrange equations of motion and deformation is
described as follows:

M v̇N −Aλ = −KuN −BvN + ph
∂S

∂uN

Note that gradient vector ∂S/∂uN can be calculated from geometry of the polygon (see
Problem 6 in Section 3). Method surrounded area gradient of class Body calculates this
gradient vector.

Let us compute dynamic deformation of an elastic membrane shown in Fig. 3.5. Membrane
material is characterized by Young’s modulus E = 0.1MPa, viscous modulus c = 40Pa · s,
Poisson’s ratio ν = 0.48, and density ρ = 1.0 g/cm3. Pressure at time t is given by

p(t) =

{
2.0 kPa t ≤ 1.5 s

0.0 kPa t > 1.5 s

Figure 4.8 shows a snapshot of the computation result. The membrane expands outward while
positive pressure is applied, then recovers its natural shape after the pressure is released.

4.4 Nodal point forces based on Green strain

Simulation of dynamic motion and deformation requires nodal point forces. When we apply
Cauchy strain, a set of nodal point forces is calculated by a linear description −KuN, since
strain potential energy based on Cauchy strain is quadratic with respect to nodal point
displacements. When we apply Green strain, strain potential energy turns quartic with
respect to nodal point displacements, suggesting that nodal point forces are cubic with respect
to the displacements. Instead of formulating complex cubic description, we construct a
procedure to calculate nodal point forces based on Green strain.

Let us formulate nodal point forces caused by Green strain E at triangle Tp = △PiPjPk.
Partial strain potential energy stored in triangle Tp is described as

Up =
1

2
E⊤(λIλ + µIµ)E △h
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where △ = △PiPjPk. Differentiating the above equation with respect to γu and γv, we find

∂Up

∂γu
=

∂E⊤

∂γu

∂Up

∂E
,

∂Up

∂γv
=

∂E⊤

∂γv

∂Up

∂E

where

∂Up

∂E
= (λIλ + µIµ)△hE

and

∂E⊤

∂γu
=

[
∂Exx

∂γu

∂Eyy

∂γu

∂(2Exy)

∂γu

]
,

∂E⊤

∂γv
=

[
∂Exx

∂γv

∂Eyy

∂γv

∂(2Exy)

∂γv

]
Calculating the above partial derivatives, we have

∂Exx

∂γu
= a+ (a⊤γu)a = (1 + ux)a

∂Eyy

∂γu
= (b⊤γu)b = uyb

∂(2Exy)

∂γv
= b+ a(b⊤γu) + (a⊤γu)b = (1 + ux)b+ uya

∂Exx

∂γv
= (a⊤γv)a = vxa

∂Eyy

∂γv
= b+ (b⊤γv)b = (1 + vy)b

∂(2Exy)

∂γv
= a+ a(b⊤γv) + (a⊤γv)b = (1 + vy)a+ vxb

Consequently,

∂Up

∂γu
=
[
(1 + ux)a uyb (1 + ux)b+ uya

] ∂Up

∂E

∂Up

∂γv
=
[

vxa (1 + vy)b (1 + vy)a+ vxb
] ∂Up

∂E

From the above two partial derivatives, we obtain partial derivatives ∂Up/∂ui, ∂Up/∂uj ,
and ∂Up/∂uk. Namely, the first elements of the above two partial derivatives yield ∂Up/∂ui,
their second elements yield ∂Up/∂uj , and their third elements yield ∂Up/∂uk. Nodal point
forces at Pi, Pj , Pk caused by partial strain potential energy Up are then formulated as

fp
i = −∂Up

∂ui
, fp

j = −∂Up

∂uj
, fp

k = −∂Up

∂uk

Synthesizing nodal point forces of all triangles, we obtain nodal force vector caused by Green
strain, that is,

fN =
⊕
p

 fp
i

fp
j

fp
k

 (4.4.1)
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(a) 0.0 s (b) 0.2 s (c) 0.5 s (d) 0.6 s (e) 2.0 s

Figure 4.9: Dynamic bending of elastic bending (Cauchy strain)

(a) 0.0 s (b) 0.2 s (c) 0.5 s (d) 0.6 s (e) 2.0 s

Figure 4.10: Dynamic bending of elastic bending (Green strain)

For example, nodal force vector of a rectangle region shown in Fig. 2.2 is described as follows:

fN =


f1
1

f1
2 + f2

2 + f3
2

f2
3 + f4

3

f1
4 + f3

4

f2
5 + f3

5 + f4
5

f4
6


Replacing −KuN in eq. (4.3.4) by the above nodal force vector fN, we obtain dynamic equa-
tion of deformation based on Green strain. Method nodal forces Green strain of class
Body calculates nodal force vector based on Green strain for given nodal point displacements.

The above procedure is able to calculate Green strain based nodal force vector, but
requires much calculation time. Section 4.5 details an improved procedure to calculate
Green strain based nodal force vector through multiplication of coefficient matrices and
collective vectors. Before calculating Green strain based nodal force vector, method cal-
culate coefficient matrices for Green strain of class Body should be performed once to
prepare coefficient matrices for the calculation.

Example (beam bending) Let us simulate the dynamic bending of an elastic beam of its
length 10 cm, height 2 cm, and thickness 1 cm. One end of the beam is fixed to a wall while
the center of the other end is push downward by 5 cm during 5 s, before releasing the pushing
constraint. Assume the material of the beam exhibits isotropic linear elasticity, specified by
E = 0.1MPa, c = 4.0Pa · s, and ν = 0.48. Figure 4.9 shows the computation based on
Cauchy strain. Dynamic deformation is formulated as eq. (4.3.4). The right end of the beam
unnaturally expands in the deformed shape. Figure 4.10 shows the computation based on
Green strain. We find that the beam bends naturally, avoiding the unnatural expansion of
the elements.
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(a) 0.0 s (b) 0.2 s (c) 0.5 s

(d) 1.0 s (e) 2.0 s (f) 4.0 s

Figure 4.11: Rolling of elastic ring

Example (rolling contact) Let us calculate dynamic behavior of an elastic ring rolling on
a flat floor. We focus on the two-dimensional deformation of cross-sectional area of the ring.
The outer and inner radii of the ring are 4mm and 2mm in its natural shape (Fig. 4.11(a)).
Material of the ring exhibits isotropic linear elasticity, specified by E = 0.1MPa and ν = 0.48.
Green strain is used during the calculation. Viscous modulus of the material is c = 0.04 kPa·s.
Density of the material is ρleft = 1 g/cm3 in the left half of the ring while ρright = 10 g/cm3

in the right half. Gravitational force acts along vertical direction downward with acceleration
of gravity g = 9.8m/s2. Difference in density causes the ring rolling clockwise.

Let us extend penalty method eq. (4.3.5) by introducing tangential damping so as to
simulate the rolling on a floor. Let d(x) be the signed distance specifying the floor. Velocity
ẋ can be decomposed into normal component (∇g ∇g⊤) ẋ and tangential component (I −
∇g ∇g⊤) ẋ. Assuming that damping force acts along tangential direction, penalty force is
described as

fp =

{
(−Kpd−Bpḋ)∇d−Bt(I −∇g ∇g⊤) ẋ d(x) ≤ 0

0 otherwise
(4.4.2)

where Bt represents tangential damping coefficient. Especially, when a floor is specified by
d(x) = y, that is, the floor region is given by y ≤ 0, penalty force applied to nodal point Pk

is described as

fp =


[

−Btu̇k

−Kp(yk + vk)−Bpv̇k

]
yk + vk ≤ 0

0 otherwise

(4.4.3)

The above equation provides reaction forces applied to an elastic body from the floor.
Figure 4.11 shows a snapshot of a simulation result with penalty method parameters

Kp = 1000 N/m, Bp = 0 N/(m/ s), and Bt = 20 N/(m/ s). The elastic ring deforms under
gravity, rotating clockwise and moving rightward (Fig. 4.11(b) through Fig. 4.11(e)). The
ring turns stationary when heavier half comes downward (Fig. 4.11(f)).
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Example (elastic ring with eight spring actuators) Let us calculate dynamic behav-
ior of an elastic ring driven by eight spring actuators. We focus on the two-dimensional
deformation of cross-sectional area of the ring (see Fig. 3.11(a) in Section 3.5). The outer
and inner radii of the ring are 5mm and 4mm in its natural shape. Material of the ring ex-
hibits isotropic linear elasticity, specified by E = 0.1MPa and ν = 0.48. Green strain is used
during the calculation. Let density and viscous modulus of ring material be ρ = 1 g/cm3

and c = 0.04 kPa · s. Eight spring actuators labeled A1 through A8 counterclockwise are
radially distributed inside the ring. Mass m supports the spring actuators, that is, one end
of each spring actuator is connected to the mass and the other end is connected to inner
surface of the ring. In natural state, actuator A1 is below the mass. Let mass be m = 1g
and acceleration of gravity be g = 9.8m/s2. Assume that natural length of all actuators be
L = 4mm, that is, the natural length is equal to the inner radius of the ring. Let spring
constant of all actuators be k = 20 N/m.

Note that the total Lagrangian is the sum of Lagrangian of the elastic ring and Lagrangian
of of the mass and spring actuators. Lagrangian of the elastic ring yields dynamic equation
of motion and deformation of the elastic ring alone. We formulate Lagrangian of the mass
and spring actuators to formulate the dynamic equation of the mass as well as additional
forces applied to the elastic ring through spring actuators. Letting xmass be positional vector
of the mass, Lagrangian of the mass and spring actuators is formulated as

L′ =
1

2
m ẋ⊤

mass ẋmass −
(
Usprings −mg⊤xmass

)
+W

where g = [ 0, −g ]⊤ represents gravitational acceleration vector. Letting

ei =
xmass − (xj + uj)

∥xmass − (xj + uj)∥

we have ∂di/∂xmass = ei and ∂di/∂uj = −ei (see Problem 1), which directly yield

∂

∂xmass

(
1

2
kd2i

)
= kdiei,

∂

∂uj

(
1

2
kd2i

)
= −kdiei

Lagrange equation of motion of mass m is described as

mẍmass =
8∑

i=1

(fi − kdi)ei +mg

The following additional force is applied to nodal point Pj :

∂L′

∂uj
= −(fi − kdi)ei

Solving dynamic equations of motion and deformation with respect to uN and xmass, we
obtain the behavior of an elastic ring driven by spring actuators.

Let us simulate dynamic rolling of the ring on a floor. Rolling on the floor is described by
penalty method with tangential damping. Penalty method parameters are Kp = 1000 N/m,
Bp = 0 N/(m/ s), and Bt = 20 N/(m/ s). Figure 4.12 shows a snapshot of a computa-
tion result. The natural shape (Fig. 4.12(a)) of the elastic ring deforms under gravity for
0.2 s (Fig. 4.12(b)). A pair of opposite spring actuators A2 and A6 apply shrinking force
of 5N for 1.8 s (Fig. 4.12(b) through (Fig. 4.12(d)). After relaxing all spring actuators for
0.1 s (Fig. 4.12(d) through Fig. 4.12(e)), another pair of opposite spring actuators A3 and A7

70



(a) 0.0 s (b) 0.2 s (c) 0.3 s (d) 2.0 s

(e) 2.1 s (f) 2.2 s (g) 4.0 s (h) 6.9 s

(i) 7.0 s (j) 7.1 s (k) 9.0 s (l) 12.0 s

Figure 4.12: Rolling of elastic ring driven by spring actuators

apply shrinking force of 5N for 4.8 s (Fig. 4.12(e) through (Fig. 4.12(h)). After relaxing all
spring actuators for 0.1 s (Fig. 4.12(h) through (Fig. 4.12(i)), a pair of opposite spring actu-
ators A4 and A8 apply shrinking force of 5N (Fig. 4.12(i) through (Fig. 4.12(l)). This result
demonstrates the elastic ring rolls rightward through its deformation caused by successive
activation of spring actuators: A2 and A6, A3 and A7, then A4 and A8.

4.5 Direct computation of Green strain based forces

Here we establish a procedure to directly compute nodal point forces based on Green strain.
Note that Green strain components are quadratic with respect to partial derivatives ux, uy,
vx, vy, resulting that strain potential energy is quartic with respect to the partial deriva-
tives. Thus, nodal force components based on Green strain are cubic. Let us derive cubic
polynomials of nodal force components.

We introduce the following operator ⊙ to describe quadratic and cubic terms in vector
forms. Let x = [x1, x2, · · · , xm ]⊤ be an m-dimensional column vector and y = [ y1, y2,
· · · , yn ]⊤ be an n-dimensional column vector. Let x ⊙ y be an mn-dimensional column
vector defined as

x⊙ y =


x1y
x2y
...

xmy

 (4.5.1)

This operator is associative; x⊙ (y ⊙ z) = (x⊙ y)⊙ z, but not commutative. Additionally,
we find

(a⊤x)(b⊤y) = (a⊙ b)⊤(x⊙ y) (4.5.2)

(a⊤x)(bc⊤z) = {b (a⊙ c)⊤}(x⊙ y) (4.5.3)

(a⊤x)(y⊤bc⊤z) = (a⊙ b⊙ c)⊤(x⊙ y ⊙ z) (4.5.4)
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Note that x⊙y consists of quadratic terms xiyj and x⊙y⊙z consists of cubic terms xiyjzk,
suggesting that quadratic and cubic terms can be described in vector forms using operator
⊙. Recall that

∂Up

∂γu
= Pu(λIλ + µIµ)△hE = (λ△h)PuIλE + (µ△h)PuIµE

∂Up

∂γv
= Pv(λIλ + µIµ)△hE = (λ△h)PvIλE + (µ△h)PvIµE

where

Pu =
[
(1 + ux)a uyb (1 + ux)b+ uya

]
Pv =

[
vxa (1 + vy)b (1 + vy)a+ vxb

]
We describe PuIλE, PuIµE, PvIλE, and PvIµE in cubic polynomials and combine the
polynomials to obtain ∂Up/∂γu and ∂Up/∂γv.

Let us calculate the first, second, and third order terms of PuIλE with respect to γu and
γv. Note that

PuIλE = {(1 + ux)a+ uyb}(Exx + Eyy)

= (a+ aux + buy)

{
ux + vy +

1

2
(u2

x + v2x + u2
y + v2y)

}
The first order terms are thus given by

p1
uλ = a(ux + vy) = aa⊤γu + ab⊤γv

Letting γuu = γu ⊙ γu, γuv = γu ⊙ γv, γvu = γv ⊙ γu, and γvv = γv ⊙ γv, the second order
terms are

p2
uλ = (aux + buy)(ux + vy) +

1

2
a(u2

x + v2x + u2
y + v2y)

=
3

2
au2

x +
1

2
au2

y + buxuy + auxvy + buyvy +
1

2
av2x +

1

2
av2y

=

{
3

2
a(a⊙ a)⊤ +

1

2
a(b⊙ b)⊤ + b(a⊙ b)⊤

}
γuu

+
{
a(a⊙ b)⊤ + b(b⊙ b)⊤

}
γuv +

{
1

2
a(a⊙ a)⊤ +

1

2
a(b⊙ b)⊤

}
γvv

Letting γuuu = γu ⊙ γu ⊙ γu and γuvv = γu ⊙ γv ⊙ γv, the third order terms are

p3
uλ =

1

2
(aux + buy)(u

2
x + v2x + u2

y + v2y)

=
1

2
a(u3

x + uxv
2
x + uxu

2
y + uxv

2
y) +

1

2
b(uyu

2
x + uyv

2
x + u3

y + uyv
2
y)

=
1

2

{
a(u3

x + uxu
2
y) + b(uyu

2
x + u3

y)
}
+

1

2

{
a(uxv

2
x + uxv

2
y) + b(uyv

2
x + uyv

2
y)
}

=
1

2

{
a(a⊙ a⊙ a+ a⊙ b⊙ b)⊤ + b(b⊙ a⊙ a+ b⊙ b⊙ b)⊤

}
γuuu

+
1

2

{
a(a⊙ a⊙ a+ a⊙ b⊙ b)⊤ + b(b⊙ a⊙ a+ b⊙ b⊙ b)⊤

}
γuvv
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Let us calculate the first, second, and third order terms of PuIµE with respect to γu and γv.
Note that

PuIµE = (2a+ 2aux)Exx + 2buyEyy + (b+ bux + auy) · 2Exy

The first order terms are thus given by

p1
uµ = 2aux + b(uy + vx)

= (2aa⊤ + bb⊤)γu + ba⊤γv

The second order terms are given by

p2
uµ = a(u2

x + v2x) + 2au2
x + 2buyvy + b(uxuy + vxvy) + (bux + auy)(uy + vx)

= 3au2
x + au2

y + 2buxuy + buxvx + auyvx + 2buyvy + av2x + bvxvy

= {3a(a⊙ a)⊤ + a(b⊙ b)⊤ + 2b(a⊙ b)⊤}γuu

+ {b(a⊙ a)⊤ + a(b⊙ a)⊤ + 2b(b⊙ b)⊤}γuv + {a(a⊙ a)⊤ + b(a⊙ b)⊤}γvv

The third order terms are given by

p3
uµ = aux(u

2
x + v2x) + buy(u

2
y + v2y) + (bux + auy)(uxuy + vxvy)

= au3
x + auxv

2
x + bu3

y + buyv
2
y + bu2

xuy + buxvxvy + au2
yux + auyvyvx

= {a(a⊙ a⊙ a+ b⊙ b⊙ a)⊤ + b(b⊙ b⊙ b+ a⊙ a⊙ b)⊤}γuuu

+ {a(a⊙ a⊙ a+ b⊙ b⊙ a)⊤ + b(b⊙ b⊙ b+ a⊙ a⊙ b)⊤}γuvv

Let us calculate the first, second, and third order terms of PvIλE with respect to γu and
γv. Note that

PvIλE = {vxa+ (1 + vy)b}(Exx + Eyy)

= (b+ avx + bvy)

{
ux + vy +

1

2
(u2

x + v2x + u2
y + v2y)

}
The first order terms are thus given by

p1
vλ = b(ux + vy) = ba⊤γu + bb⊤γv

The second order terms are

p2
vλ = (avx + bvy)(ux + vy) +

1

2
b(u2

x + v2x + u2
y + v2y)

=
1

2
bu2

y +
1

2
bu2

x + buxvy + auxvx +
3

2
bv2y +

1

2
bv2x + avyvx

=

{
1

2
b(b⊙ b)⊤ +

1

2
b(a⊙ a)⊤

}
γuu +

{
b(a⊙ b)⊤ + a(a⊙ a)⊤

}
γuv

+

{
3

2
b(b⊙ b)⊤ +

1

2
b(a⊙ a)⊤ + a(b⊙ a)⊤

}
γvv
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Letting γvuu = γv ⊙ γu ⊙ γu and γvvv = γv ⊙ γv ⊙ γv, the third order terms are

p3
vλ =

1

2
(avx + bvy)(u

2
x + v2x + u2

y + v2y)

=
1

2
a(vxu

2
x + v3x + vxu

2
y + vxv

2
y) +

1

2
b(vyu

2
x + vyv

2
x + vyu

2
y + v3y)

=
1

2

{
a(vxu

2
x + vxu

2
y) + b(vyu

2
x + vyu

2
y)
}
+

1

2

{
a(v3x + vxv

2
y) + b(vyv

2
x + v3y)

}
=

1

2

{
a(a⊙ a⊙ a+ a⊙ b⊙ b)⊤ + b(b⊙ a⊙ a+ b⊙ b⊙ b)⊤

}
γvuu

+
1

2

{
a(a⊙ a⊙ a+ a⊙ b⊙ b)⊤ + b(b⊙ a⊙ a+ b⊙ b⊙ b)⊤

}
γvvv

Let us calculate the first, second, and third order terms of PvIµE with respect to γu and γv.
Note that

PvIµE = 2avxExx + (2b+ 2bvy)Eyy + (a+ bvx + avy) · 2Exy

The first order terms are thus given by

p1
vµ = 2bvy + a(uy + vx)

= ab⊤γu + (2bb⊤ + aa⊤)γv

The second order terms are given by

p2
vµ = 2auxvx + b(u2

y + v2y) + 2bv2y + a(uxuy + vxvy) + (bvx + avy)(uy + vx)

= bu2
y + auyux + auyvy + buyvx + 2auxvx + 3bv2y + bv2x + 2avyvx

= {b(b⊙ b)⊤ + a(b⊙ a)⊤}γuu + {a(b⊙ b)⊤ + b(b⊙ a)⊤ + 2a(a⊙ a)⊤}γuv

+ {3b(b⊙ b)⊤ + b(a⊙ a)⊤ + 2a(b⊙ a)⊤}γvv

The third order terms are given by

p3
vµ = avx(u

2
x + v2x) + bvy(u

2
y + v2y) + (bvx + avy)(uxuy + vxvy)

= avxu
2
x + av3x + bvyu

2
y + bv3y + bvxuxuy + bv2xvy + avyuyux + av2yvx

= {a(a⊙ a⊙ a+ b⊙ b⊙ a)⊤ + b(b⊙ b⊙ b+ a⊙ a⊙ b)⊤}γvuu

+ {a(a⊙ a⊙ a+ b⊙ b⊙ a)⊤ + b(b⊙ b⊙ b+ a⊙ a⊙ b)⊤}γvvv

Based on the above results, we can describe partial derivatives ∂Up/∂γu and ∂Up/∂γv in
polynomial forms. Note that

∂Up

∂γu
= (λ△h)(p1

uλ + p2
uλ + p3

uλ) + (µ△h)(p1
uµ + p2

uµ + p3
uµ) (4.5.5)

∂Up

∂γv
= (λ△h)(p1

vλ + p2
vλ + p3

vλ) + (µ△h)(p1
vµ + p2

vµ + p3
vµ) (4.5.6)

Let us introduce 3× 3 matrices Ap
1, A

p
2, B

p
1 , and Bp

2 defined by[
Ap

1 Ap
2

Bp
1 Bp

2

]
= λ△h

[
aa⊤ ab⊤

ba⊤ bb⊤

]
+ µ△h

[
2aa⊤ + bb⊤ ba⊤

ab⊤ 2bb⊤ + aa⊤

]
(4.5.7)
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Let us introduce 3× 32 matrices Ap
1,1, A

p
1,2, A

p
2,2, B

p
1,1, B

p
1,2, and Bp

2,2 defined by

[
Ap

1,1 Ap
1,2 Ap

2,2

Bp
1,1 Bp

1,2 Bp
2,2

]
= λ△h

[
Cp, λ

2; 1,1 Cp, λ
2; 1,2 Cp, λ

2; 1,3

Cp, λ
2; 2,1 Cp, λ

2; 2,2 Cp, λ
2; 2,3

]

+ µ△h

[
Cp, µ

2; 1,1 Cp, µ
2; 1,2 Cp, µ

2; 1,3

Cp, µ
2; 2,1 Cp, µ

2; 2,2 Cp, µ
2; 2,3

]
(4.5.8)

where

Cp, λ
2; 1,1 =

3

2
a(a⊙ a)⊤ +

1

2
a(b⊙ b)⊤ + b(a⊙ b)⊤

Cp, λ
2; 1,2 = a(a⊙ b)⊤ + b(b⊙ b)⊤

Cp, λ
2; 1,3 =

1

2
a(a⊙ a)⊤ +

1

2
a(b⊙ b)⊤

Cp, λ
2; 2,1 =

1

2
b(b⊙ b)⊤ +

1

2
b(a⊙ a)⊤

Cp, λ
2; 2,2 = b(a⊙ b)⊤ + a(a⊙ a)⊤

Cp, λ
2; 2,3 =

3

2
b(b⊙ b)⊤ +

1

2
b(a⊙ a)⊤ + a(b⊙ a)⊤

and

Cp, µ
2; 1,1 = 3a(a⊙ a)⊤ + a(b⊙ b)⊤ + 2b(a⊙ b)⊤

Cp, µ
2; 1,2 = b(a⊙ a)⊤ + a(b⊙ a)⊤ + 2b(b⊙ b)⊤

Cp, µ
2; 1,3 = a(a⊙ a)⊤ + b(a⊙ b)⊤

Cp, µ
2; 2,1 = b(b⊙ b)⊤ + a(b⊙ a)⊤

Cp, µ
2; 2,2 = a(b⊙ b)⊤ + b(b⊙ a)⊤ + 2a(a⊙ a)⊤

Cp, µ
2; 2,3 = 3b(b⊙ b)⊤ + b(a⊙ a)⊤ + 2a(b⊙ a)⊤

Let us introduce 3× 33 matrices Cp
1 and Cp

2 defined by[
Cp

1 Cp
2

]
= λ△h

[
Cp, λ

3 Cp, λ
3

]
+ µ△h

[
Cp, µ

3 Cp, µ
3

]
(4.5.9)

where

Cp, λ
3 =

1

2

{
a(a⊙ a⊙ a+ a⊙ b⊙ b)⊤ + b(b⊙ a⊙ a+ b⊙ b⊙ b)⊤

}
Cp, µ

3 = a(a⊙ a⊙ a+ b⊙ b⊙ a)⊤ + b(b⊙ b⊙ b+ a⊙ a⊙ b)⊤

Partial derivatives ∂Up/∂γu and ∂Up/∂γv corresponding to triangle Tp are then described
as follows:

∂Up

∂γu
= Ap

1γu +Ap
2γv +Ap

1,1γuu +Ap
1,2γuv +Ap

2,2γvv + Cp
1γuuu + Cp

2γuvv (4.5.10)

∂Up

∂γv
= Bp

1γu +Bp
2γv +Bp

1,1γuu +Bp
1,2γuv +Bp

2,2γvv + Cp
1γvuu + Cp

2γvvv (4.5.11)

Note that γu and γv are three-dimensional, γuu, γuv, and γvv consist of 32 components, and
γuuu, γuvv, γvuu, and γvvv have 33 components.
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Let cu = [u1, u2, · · · , uN ]⊤ and cv = [ v1, v2, · · · , vN ]⊤ be collective vectors of displace-
ment components. Collective vectors corresponding to quadratic terms are cuu = cu ⊙ cu,
cuv = cu ⊙ cv, cvu = cv ⊙ cu, and cvv = cv ⊙ cv. Collective vectors corresponding to cubic
terms are cuuu = cu⊙cu⊙cu, cuvv = cu⊙cv⊙cv, cvuu = cv⊙cu⊙cu, and cvvv = cv⊙cv⊙cv.
Synthesizing above equations over all triangles yield partial derivatives ∂U/∂cu and ∂U/∂cv
described as

∂U

∂cu
= A1cu +A2cv +A1,1cuu +A1,2cuv +A2,2cvv + C1cuuu + C2cuvv (4.5.12)

∂U

∂cv
= B1cu +B2cv +B1,1cuu +B1,2cuv +B2,2cvv + C1cvuu + C2cvvv (4.5.13)

where

Ai =
⊕
p

Ap
i , Bi =

⊕
p

Bp
i , Ci =

⊕
p

Cp
i , (i = 1, 2) (4.5.14)

Ai,j =
⊕
p

Ap
i,j , Bi,j =

⊕
p

Bp
i,j , (i, j) = (1, 1), (1, 2), (2, 2) (4.5.15)

Operator ⊕ calculates total coefficient matrices by synthesizing coefficient matrices at indi-
vidual triangles.

Note that coefficient matrices Ai, Bi, Ai,j , Bi,j , and Ci can be computed in advance.
Then, we can calculate Green strain based nodal force vector by eqs. (4.5.12)(4.5.13), which
consist of simple vector/matrix operations.

Implementation One barrier to implement the above calculation is memory consumption.
Let np be the number of nodal points. Collective vectors for quadratic terms cuu, cuv, and
cvv are n2

p-dimensional and collective vectors for cubic terms cuuu, cuvv, cvuu, and cvvv are
n3
p-dimensional. Then, we find that Ai and Bi are np×np matrices, Ai,j and Bi,j are np×n2

p

matrices, and C1 and C2 are np × n3
p matrices, which consume excessive memory. Here we

reduce dimensions of collective vectors to prevent excessive memory consumption.

Recall that total strain potential energy is the sum of strain potential energies at individ-
ual triangles, implying that quadratic and cubic terms originate from triangles. This implies
that quadratic term uiuj appears if there exists a triangle that involves both Pi and Pj , and
that cubic term uiujuk appears if there exists a triangle that involves all Pi, Pj , and Pk.
In other words, quadratic term uiuj does not appear if no triangles involve both Pi and Pj ,
and cubic term uiujuk does not appear if no triangles involve all Pi, Pj , and Pk. We can
eliminate such non-existing terms and their corresponding columns of coefficient matrices.
For example, when no triangles involve both Pi and Pj , column of matrix A1,1 corresponding
to uiuj can be eliminated. Similarly, when no triangles involve all Pi, Pj , and Pk, column
of matrix C1 corresponding to uiujuk can be eliminated. Such elimination yields compact
collective vectors and compact coefficient matrices.

Let us take a simple example of rectangle region □P1P3P6P4 shown in Fig. 2.2. In this
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example, vectors cu, cuu, and cuuu are described as follows:

cu =


u1

u2

u3

u4

u5

u6

 , cuu =



u1u1

u1u2

u1u4

u2u1

u2u2

u2u3

u2u4

u2u5

...
u6u6


, cuuu =



u1u1u1

u1u1u2

u1u1u4

u1u2u1

u1u2u2

u1u2u4

u1u4u1

u1u4u2

u1u4u4

...
u6u6u6


Note that suffices appear in lexicographic order. Quadratic term u1u3 is not involved in cuu
as no triangles include both P1 and P3. Cubic term u1u2u5 is not involved in cuuu as no
triangles include all P1, P2, and P5. Dimension of vector cuu is 24, which is less than 62,
and dimension of vector cuuu is 84, which is less than 63. Let ne, and nt be the numbers of
edges and triangles. Noting that np = 6, ne = 9, and nt = 4 in this example, we find that
np + 2ne = 24 and np + 6ne + 6nt = 84 (see Problem 3). Other collective vectors can be
described in these compact forms. Then, coefficient matrices can be described in compact
forms: Ai and Bi are 6 × 6 matrices, Ai,j and Bi,j are 6 × 24 matrices, and C1 and C2 are
6× 84 matrices.

Let c2i and c2j be vectors consisting of the first and second suffices of quadratic terms in
cuu: c2i = [ 1, 1, 1, 2, 2, 2, 2, 2, · · · , 6 ]⊤ and c2j = [ 1, 2, 4, 1, 2, 3, 4, 5, · · · , 6 ]⊤. Then,
collective vectors for quadratic terms are calculated by cuu = cu(c2i) .* cu(c2j), cuv =
cu(c2i) .* cv(c2j), and cvv = cv(c2i) .* cv(c2j). Letting c3i, c3j, and c3k be vectors
consisting of the first, second, and third suffices of cubic terms in cuuu: c3i = [ 1, 1, 1, 1,
1, 1, 1, 1, 1, · · · , 6 ]⊤, c3j = [ 1, 1, 1, 2, 2, 2, 4, 4, 4, · · · , 6 ]⊤, and c3k = [ 1, 2, 4, 1, 2, 4,
1, 2, 4, · · · , 6 ]⊤, collective vectors for cubic terms are calculated similarly such as cuuu =
cu(c3i) .* cu(c3j) .* cu(c3k) and cuvv = cu(c3i) .* cv(c3j) .* cv(c3k).

Let us describe pairs and triplets of suffices by (np + 1)-base numbers. In this example,
a pair of suffices i and j is described by a 7-base number 7i+ j. Vector id2 consists of these
numbers. Finding number 7i+ j in vector id2 yields the row number in collective vector cuu
corresponding to quadratic term uiuj . A triplet of suffices i, j, and k is described by a 7-base
number 72i + 7j + k. Vector id3 consists of these numbers. Finding number 72i + 7j + k
in vector id3 yields the row number in collective vector cuuu corresponding to cubic term
uiujuk.

Let us demonstrate how operator ⊕ in eqs. (4.5.14)(4.5.15) works in this example. Recall

that matrix C1, λ
2; 1,1 originates from triangle T1, which consists of three nodal points P1, P2,

and P4. We find matrix C1, λ
2; 1,1 is a 3× 9 matrix given by

C1, λ
2; 1,1 =

1

2000

 −6 3 3 5 −3 −2 1 0 −1
4 −3 −1 −3 3 0 −1 0 1
2 0 −2 −2 0 2 0 0 0


Columns are related to quadratic terms u1u1, u1u2, u1u4, u2u1, u2u2, u2u4, u4u1, u4u2,
and u4u4, which correspond to the 1, 2, 3, 4, 5, 7, 13, 14, and 15-th elements of collec-
tive vector cuu. So, the column vectors of C1, λ

2; 1,1 contribute to the 1, 2, 3, 4, 5, 7, 13,
14, and 15-th columns of the total coefficient matrix. Column numbers in the total co-
efficient matrix can be obtained by finding the 7-base number corresponding to quadratic
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terms in vector id2. Matrix C1, λ
3 , which corresponds to triangle T1, is a 3 × 27 matrix.

The first, second, and third columns are corresponding to u1u1u1, u1u1u2, and u1u1u4.
So, these column vectors of C1, λ

3 contribute to the first, second, and third columns of the
total coefficient matrix. Column numbers in the total coefficient matrix can be obtained
by finding the 7-base number corresponding to cubic terms in vector id3. Method cal-
culate coefficient matrices for Green strain of class Body prepares coefficient matrices
Ai, Bi, Ai,j , Bi,j , and Ci in compact forms and vectors c2i, c2j, c3i, c3j, and c3k for
calculating compact collective vectors.

Problems

1. Let x and y be independent vectors, d = ∥y − x∥, and

e =
y − x

d

Show ∂d/∂y = e and ∂d/∂x = −e.

2. Simulate the dynamic behavior of an elastic ring rolling on a flat floor based on Cauchy
strain. Compare the result with computed result based on Green strain.

3. Explain why dimension of compact collective vector cuu is equal to np + 2ne. Explain
why dimension of compact collective vector cuuu is equal to np + 6ne + 6nt.

4. Observe how tangential damping coefficient Bt affects dynamic behavior of an elastic
ring rolling on a flat floor.
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