
Chapter 5

Deformation Models

5.1 Classification of Deformation

Let us push a soft object of which natural shape is given in Fig. 5.1(a). The object deforms
according to the applied force (Fig. 5.1(b)). Let us observe the object shape after the applied
force is released. Depending on the shape after the release, object deformation can be roughly
classified into three categories in our definition: elastic deformation, plastic deformation, and
rheological deformation. Elastic deformation implies that the deformation caused by the
applied force is completely reversible (Fig. 5.1(c)). Contrary, plastic deformation implies
that the deformation caused by the applied force is completely maintained (Fig. 5.1(e)).
Rheological deformation implies that the deformation is partially reversible (Fig. 5.1(d)).
Rheological deformation is also referred to as elastoplastic deformation.

(a) natural shape (b) deformed shape

(c) elastic deformation (d) rheological deformation (e) plastic deformation

Figure 5.1: Classification of object deformation
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5.2 Elementary Models

5.2.1 Elastic model

Elasticity determines the relationship between stress and strain. We can feel the hardness of
an object on a table by pushing the object by a finger and observing the surface displacement
against the applied force. For example, pushing the surface of a aluminum plate yields little
displacement while a rubber plate would be deformed much by the equally applied force.
This deformation depends on not only material property but also the object geometry. For
example, when a force is applied to an object through a narrow area, the object deforms
much. A thicker object deforms much even though the same force is applied. Concept of
stress and strain is thus introduced to avoid the effect of the geometry. Stress is determined
by the applied force divided by the area, through which the force is applied to the object.
Strain is determined by the displacement divided by the object thickness. Namely, stress is
a normalized force applied to a unit area while strain is a normalized displacement. Thus,
stress and strain avoid the effect of the geometry, implying that the relationship between stress
and strain describes the property of a material itself. Stress-strain relationship determines
how a material deforms according to applied stress or strain. Generally, the relationship is
nonlinear and time-variant. In the formulation of object deformation, we often assume an
ideal relationship: linear and time-invariant elasticity, which is represented by a linear elastic
model.

Let σ be the stress applied to a material and ε be the strain of the material. Linear
elasticity is then described as

σ = Eε, (5.2.1)

where constant E is referred to as Young’s modulus. Elastic model is described by a symbol
shown in Fig. 5.2(a). Note that unit of σ is N/m2 or Pa and ε is a dimensionless quantity,
implying that unit of Young’s modulus is N/m2 or Pa. Young’s modulus determines the
hardness of a material itself. For example, Young’s modulus of aluminum is about 7.0 ×
1010 Pa while Young’s modulus of rubber stays around 106 Pa, suggesting that aluminum is
harder than rubber.

5.2.2 Viscous model

Viscosity determines the relationship between stress and the rate of strain. Let us push a
bread dough by a hand. When we push the dough faster, we feel larger force. Pushing the
dough slower yields smaller force. Especially, after stopping the pushing, we feel little force.
Namely, the force depends on the speed of pushing rather than the displacement of pushing.
This suggests a relationship between stress and the rate of strain. Generally, the relationship
is nonlinear and time-variant as well. We often assume an ideal relationship: linear and
time-invariant viscosity, which is represented by a linear viscous element.

Let σ be the stress applied to a material and ε be the strain of the material. Linear
viscosity is then described as

σ = cε̇, (5.2.2)

where constant c is referred to as viscous modulus. Viscous model is described by a symbol
shown in Fig. 5.2(b). Note that unit of σ is N/m2 or Pa and unit of ε̇ is 1/s, implying that
unit of viscous modulus is Ns/m2 or Pa · s.
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E

(a) elastic element

c

(b) viscous element

Figure 5.2: Elementary models

(a) elastic element (b) viscous element

Figure 5.3: Strain responses of elastic and viscous elements to constant stress. t1 = 2.00,
t2 = 5.00, σ0 = 10.00, E = 5.00, and c = 5.00.

5.2.3 Response to constant stress

Let us apply constant stress σ0 to elastic model during time period [ t1, t2 ]. Strain of the
model is then described as

ε =


0 t ≤ t1

σ0/E t ∈ [ t1, t2 ]

0 t ≥ t2

which is plotted in Fig. 5.3(a). We have non-zero strain σ0/E while a constant stress is
applied during [ t1, t2 ]. After the stress is released at t2, we have no strain. Thus, this
model can describe elastic deformation. But, discontinuity of strain happens at time t1 and
t2, which is unacceptable to dynamics. This discontinuity can be eliminated by introducing
Voigt model in Section 5.3.1.

Let us apply constant stress σ0 to viscous model during time period [ t1, t2 ]. Strain of
the model is then described as

ε =


0 t ≤ t1

(σ0/c)(t− t1) t ∈ [ t1, t2 ]

(σ0/c)(t2 − t1) t ≥ t2

which is plotted in Fig. 5.3(b). Strain increases constantly at the rate of σ0/c as long as a
constant stress is applied during [ t1, t2 ]. After the stress is released at t2, constant strain
(σ0/c)(t2 − t1) remains. Thus, this model can describe plastic deformation. Note that this
strain response is continuous.
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E

c

Figure 5.4: Voigt model

(a) E = 5.00, c = 5.00 (b) E = 2.00, c = 1.00

Figure 5.5: Strain responses of Voigt model to constant stress. t1 = 2.00, t2 = 5.00, and
σ0 = 10.00.

5.3 Combined Models

Connecting elastic and viscous models in parallel and serial yields combined models, which
can describe complicated relationship between stress and strain.

5.3.1 Voigt model

As mentioned in Section 5.2.3, elastic model causes discontinuity in strain for constant stress.
Note that rate of strain diverges when stress applied to the elastic model changes discontinu-
ously. Inserting a viscous model in parallel to the elastic model to prevent the rate of strain
from diverging yields Voigt model (Fig. 5.4). This model is also referred to as Kelvin–Voigt
model.

Let σ be the stress applied to Voigt model and ε be the strain of the model. Stress σ
is the sum of two stresses: σela caused by the elastic model and σvis caused by the viscous
model. Thus, we have the following equations:

σ = σela + σvis, σela = Eε, σela = cε̇.

Eliminating σela and σvis directly yields the stress-strain relationship of Voigt model:

σ = Eε+ cε̇. (5.3.1)

When c = 0 in the above equation, a Voigt model coincides with an elastic element. When
E = 0 in the above equation, a Voigt model coincides with a viscous element.

Solving the above ordinary differential equation eq. (5.3.1) under ε(0) = 0, we can describe
strain ε(t) at time t in a convolution form as

ε(t) =

∫ t

0

1

c
e−

E
c (t−t′)σ(t′) dt′. (5.3.2)
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E c

Figure 5.6: Maxwell model

(a) E = 5.00, c = 5.00 (b) E = 2.00, c = 10.0

Figure 5.7: Strain responses of Maxwell model to constant stress. t1 = 2.00, t2 = 5.00, and
σ0 = 10.00.

Let us apply constant stress σ0 to Voigt model during time period [ t1, t2 ]. Strain of the
model is then described as

ε(t) =


0 t ≤ t1

(σ0/E){1− e−
E
c (t−t1)} t ∈ [ t1, t2 ]

(σ0/E){1− e−
E
c (t2−t1)}e−E

c (t−t2) t ≥ t2

(5.3.3)

(see Problem 1). From the above equation, we find that strain converges to stationary strain
σ0/E as long as constant stress is applied to the model. Additionally, ratio E/c determines
how fast the strain changes. Figure 5.5 shows two examples of the strain response. Figure
5.3.1 shows the response at ratio of 1.00 while Fig. 5.3.1 shows the response at ratio of 2.00.

5.3.2 Maxwell model

Elastic model completely reverses while viscous model does not reverse at all. Connecting an
elastic and viscous models in serial to describe partially reversible deformation yields Maxwell
model (Fig. 5.6). Let E be Young’s modulus, which represents the elastic model, and c be
viscous modulus, which characterizes the viscous model. Let ε be strain of the Maxwell
model and σ be stress applied to the model. Strain ε coincides to the sum of two strains:
strain εela of the elastic model and strain εvis of the viscous model. Stress σ is equal to the
stress caused by the elastic element as well as the stress caused by the viscous element. That
is,

ε = εela + εvis, σ = Eεela, σ = cε̇vis. (5.3.4)

From the above equations, we have the following first order differential equation:

σ̇ +
E

c
σ = Eε̇. (5.3.5)
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Solving the above differential equation under σ(0) = 0, stress at time t is described as follows
in a convolution form:

σ(t) =

∫ t

0

Ee−
E
c (t−t′)ε̇(t′) dt′. (5.3.6)

When c → ∞ in the above equation, a Maxwell model coincides with an elastic element.
When E → ∞ in the above equation, a Maxwell model coincides with a viscous element (see
Problem 3). In general, we have the following convolution form:

σ(t) =

∫ t

0

r(t− t′) ε̇(t′) dt′. (5.3.7)

In Maxwell model

r(t− t′) = Ee−
E
c (t−t′). (5.3.8)

Function r(t− t′) is referred to as a relaxation function.
Let us apply constant stress σ0 to Maxwell model during time period [ t1, t2 ]. Strain of

the model is then described as

ε(t) =


0 t ≤ t1

(σ0/E) + (σ0/c)(t− t1) t ∈ [ t1, t2 ]

(σ0/c)(t2 − t1) t ≥ t2

(5.3.9)

which is plotted in Fig. 5.7 (see Problem 2).
Let us reformulate eq. (5.3.6) using Laplace transform. Let σ(s), ε(s), εela(s), and εvis(s)

are Laplace transforms of σ(t), ε(t), εela(t), and εvis(t). Then, we have

ε(s) = εela(s) + εvis(s), σ(s) = Eεela(s), σ(s) = csεvis(s).

From the above equations, we have

σ(s) =
E

s+ E/c
sε(s).

Applying the inverse Laplace transform to the above equation successfully yields eq. (5.3.6).

5.3.3 Three-element models

As mentioned in Section 5.3.2, Maxwell model causes discontinuity in strain for constant
stress. This originates from the elastic element in Maxwell model. Replacing this elastic
model by Voigt model to avoid discontinuity in strain yields three-element model (Fig. 5.8).
Three-element model consists of a Voigt element and a viscous element connected in serial.
Let E and c1 be Young’s modulus and viscous modulus of the Voigt element, and c2 be
viscous modulus of the viscous element. Let εvoigt and εvis be strains at the Voigt and
viscous elements. Let ε be strain of the three-element model and σ be stress applied to the
model. Strain ε coincides to the sum of strains of the two elements. Stress σ is equal to the
stress caused by the Voigt element as well as the stress caused by the viscous element. That
is,

ε = εvoigt + εvis, σ = Eεvoigt + c1ε̇
voigt, σ = c2ε̇

vis. (5.3.10)
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E

c1

c2

Figure 5.8: Three-element model consisting of Voigt and viscous elements

(a) E = 2.00, c1 = 1.00, c2 = 10.00 (b) E = 5.00, c1 = 2.00, c2 = 5.00

Figure 5.9: Strain responses of three-element model to constant stress. t1 = 2.00, t2 = 5.00,
and σ0 = 10.00.

From the above equations, we have the following first order differential equation on stress σ:

σ̇ +
E

c1 + c2
σ =

Ec2
c1 + c2

ε̇+
c1c2

c1 + c2
ε̈. (5.3.11)

Solving the above differential equation, stress at time t is described in a convolution form
given in eq. (5.3.7), with relaxation function

r(t− t′) =
c2

c1 + c2
e−

E
c1+c2

(t−t′)

(
E + c1

d

dt

)
. (5.3.12)

Note that this relaxation function involves operator d/dt.
Let us apply constant stress σ0 to three-element model during time period [ t1, t2 ]. Solving

eq. (5.3.10), we directly have

εvoigt(t) =

∫ t

0

1

c1
e−

E
c1

(t−t′)σ(t′) dt′, εvis(t) =

∫ t

0

1

c2
σ(t′) dt′,

which implies that strain caused by the three-element model is a simple sum of strain caused
by a Voigt model (see Section 5.3.1) and strain caused by a viscous model (see Section 5.2.2).
Figure 5.9 shows two examples of the strain response.

Let us reformulate eq. (5.3.12) using Laplace transform. Let σ(s), ε(s), εvoigt(s), and
εvis(s) are Laplace transforms of σ(t), ε(t), εvoigt(t), and εvis(t). Then, we have

ε(s) = εvoigt(s) + εvis(s), σ(s) = Eεvoigt(s) + c1sε
voigt(s), σ(s) = c2sε

vis(s).

From the above equations, we have

σ(s) =

(
c2

c1 + c2

)
1

s+ E/(c1 + c2)
(E + c1s) sε(s).
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c2

Figure 5.10: Three-element model consisting of Maxwell and viscous elements

Applying the inverse Laplace transform to the above equation successfully yields eq. (5.3.12).

Let us construct a model consisting of a Maxwell and a viscous elements connected in
parallel (Fig. 5.10). Let σmaxwell and σvis be stresses applied to the Maxwell and viscous
elements. Stress σ coincides to the sum of the two stresses. Strain ε is equal to the strain of
the Maxwell element as well as the strain of the viscous element. That is,

σ = σmaxwell + σvis, σ̇maxwell +
E

c1
σmaxwell = Eε̇, σvis = c2ε̇.

From the above equations, we have the following first order differential equation on stress σ:

σ̇ +
E

c1
σ =

E(c1 + c2)

c1
ε̇+ c2ε̈. (5.3.13)

Solving the above differential equation, stress at time t is described in a convolution form
given in eq. (5.3.7), with relaxation function

r(t− t′) =
c1 + c2

c1
e−

E
c1

(t−t′)

(
E +

c1c2
c1 + c2

d

dt

)
.

Eqs. (5.3.11)(5.3.13) can be converted each other (see Problem 4), suggesting that models in
Fig. 5.8 and in Fig. 5.10 are equivalent each other.

5.3.4 Standard linear solid models

Replacing viscous element c2 in three-element models by an elastic element, we have standard
linear solid models, which are often applied to describe deformation of solids. Stress-strain
relationship of the model shown in Fig. 5.11(a) is formulated as

σ̇ +
E1 + E2

c
σ =

E1E2

c
ε+ E2ε̇. (5.3.14)

Stress-strain relationship of the model shown in Fig. 5.11(b) is formulated as

σ̇ +
E1

c
σ =

E1E2

c
ε+ (E1 + E2)ε̇. (5.3.15)

Eqs. (5.3.14)(5.3.15) can be converted each other (see Problem 5).

The above models may cause discontinuity in strain. We will apply standard linear solid
models with viscous elements (Fig. 5.12) to avoid such discontinuity. Stress-strain relationship
of the model shown in Fig. 5.12(a) is formulated as

σ̇ +
E1 + E2

c1 + c2
σ =

E1E2

c1 + c2
ε+

E1c2 + E2c1
c1 + c2

ε̇+
c1c2

c1 + c2
ε̈. (5.3.16)
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(a) serial

E1 c
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(b) parallel

Figure 5.11: Standard linear solid models

E1

c1

E2

c2

(a) serial

E1 c1

c2

E2

(b) parallel

Figure 5.12: Standard linear solid models with viscous elements

Note that when c2 = 0, the above equation coincides with eq. (5.3.14). Stress-strain relation-
ship of the model shown in Fig. 5.12(b) is formulated as

σ̇ +
E1

c1
σ =

E1E2

c1
ε+

(
E1 + E2 +

c2
c1

E1

)
ε̇+ c2ε̈. (5.3.17)

Note that when c2 = 0, the above equation coincides with eq. (5.3.15).

5.4 Serial and Parallel Models

5.4.1 Serial elastic model

Let us generalize the model shown in Fig. 5.12(a). This model consists of two Voigt models
connected in serial. Let us connect n Voigt models in serial, as shown in Fig. 5.13. Let εk
be the strain of the k-th Voigt element, which is characterized by Young’s modulus Ek and
viscous modulus ck. Stress-strain relationship of the k-th Voigt element is then given as

σ = Ekεk + ckε̇k, (k = 1, 2, · · · , n).

Total strain is the sum of strains of individual Voigt elements:

ε =
n∑

k=1

εk.

Applying Laplace transform to the above equations, we have

σ(s) = (Ek + cks)εk(s), (k = 1, 2, · · · , n),

ε(s) =

n∑
k=1

εk(s) =

{
n∑

k=1

1

cks+ Ek

}
σ(s).
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Figure 5.13: Serial elastic model

E1 c1

cn

En-1 cn-1

En

Figure 5.14: Parallel elastic model

Introducing

n∑
k=1

1

cks+ Ek

△
=

Bn−1s
n−1 + · · ·+B1s+B0

Ansn +An−1sn−1 + · · ·+A1s+A0
, (5.4.1)

we have the stress-strain relationship:(
Bn−1s

n−1 + · · ·+B1s+B0

)
σ(s) = (Ans

n + · · ·+A1s+A0) ε(s),

which yields

n−1∑
j=0

Bjσ
(j) =

n∑
j=0

Ajε
(j).

Namely, we have an ordinary differential equation of the (n − 1)-th order with respect to σ
while of the n-th order with respect to ε.

5.4.2 Parallel elastic model

Let us generalize the model shown in Fig. 5.12(b). This model consists of a Maxwell model
and a Voigt model connected in parallel. Let us connect (n− 1) Maxwell models and a Voigt
model in parallel, as shown in Fig. 5.14. Let σk be the stress applied to the k-th Maxwell
model, which is characterized by Young’s modulus Ek and viscous modulus ck. Stress-strain
relationship of the k-th Maxwell element is then given as

σ̇k +
Ek

ck
σk = Ekε̇, (k = 1, 2, · · · , n− 1).
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Figure 5.15: Serial rheological model

Total stress is the sum of stresses of individual Maxwell elements and a Voigt element:

σ =
n−1∑
k=1

σk + (Enε+ cnε̇).

Applying Laplace transform to the above equations, we have(
s+

Ek

ck

)
σk(s) = Eksε(s), (k = 1, 2, · · · , n− 1),

σ(s) =
n−1∑
k=1

σk(s) + (En + cns)ε(s) =

{
n−1∑
k=1

ckEks

cks+ Ek
+ En + cns

}
ε(s).

Introducing

n−1∑
k=1

ckEks

cks+ Ek
+ En + cns

△
=

Cns
n + Cn−1s

n−1 + · · ·+ C1s+ C0

Dn−1sn−1 + · · ·+D1s+D0
, (5.4.2)

we have the stress-strain relationship:(
Dn−1s

n−1 + · · ·+D1s+D0

)
σ(s) = (Cns

n + · · ·+ C1s+ C0) ε(s),

which yields

n−1∑
j=0

Djσ
(j) =

n∑
j=0

Cjε
(j).

Namely, we have an ordinary differential equation of the (n − 1)-th order with respect to σ
while of the n-th order with respect to ε.

5.4.3 Serial rheological model

Let us generalize the model shown in Fig. 5.8. This model consists of a Voigt model and
a viscous model connected in serial. Let us connect n Voigt models and a viscous model
in serial, as shown in Fig. 5.15. Let εk be the strain of the k-th Voigt element, which is
characterized by Young’s modulus Ek and viscous modulus ck. Let εn+1 be the strain of the
viscous element specified by viscous modulus cn+1. Stress-strain relationships are then given
as

σ = Ekεk + ckε̇k, (k = 1, 2, · · · , n), σ = cn+1ε̇n+1.

Total strain is the sum of strains of individual elements:

ε =

n∑
k=1

εk + εn+1.
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Figure 5.16: Parallel rheological model

Applying Laplace transform to the above equations, we have

σ(s) = (Ek + cks)εk(s), (k = 1, 2, · · · , n),
σ(s) = cn+1sεn+1(s),

ε(s) =
n∑

k=1

εk(s) + εn+1(s) =

{
n∑

k=1

1

cks+ Ek
+

1

cn+1s

}
σ(s).

Introducing

n∑
k=1

1

cks+ Ek
+

1

cn+1s

△
=

Bns
n +Bn−1s

n−1 + · · ·+B1s+B0

s(Ansn +An−1sn−1 + · · ·+A1s+A0)
, (5.4.3)

we have the stress-strain relationship:

(Bns
n + · · ·+B1s+B0)σ(s) = (Ans

n ++ · · ·+A1s+A0) sε(s),

which yields

n∑
j=0

Bjσ
(j) =

n∑
j=0

Ajε
(j+1).

Namely, we have an ordinary differential equation of the n-th order with respect to σ while
of the n-th order with respect to ε̇.

5.4.4 Parallel rheological model

Let us generalize the model shown in Fig. 5.10. This model consists of a Maxwell model
and a viscous model connected in parallel. Let us connect n Maxwell models and a viscous
model in parallel, as shown in Fig. 5.16. Let σk be the stress applied to the k-th Maxwell
model, which is characterized by Young’s modulus Ek and viscous modulus ck. Let σn+1

be the stress applied to the viscous model specified by viscous modulus cn+1. Stress-strain
relationships are then given as

σ̇k +
Ek

ck
σk = Ekε̇, (k = 1, 2, · · · , n), σn+1 = cn+1ε̇.
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Total strain is the sum of strains of individual elements:

σ =
n∑

k=1

σk + σn+1.

Applying Laplace transform to the above equations, we have(
s+

Ek

ck

)
σk(s) = Eksε(s), (k = 1, 2, · · · , n),

σn+1(s) = cn+1sε(s),

σ(s) =
n∑

k=1

σk(s) + σn+1(s) =

{
n∑

k=1

ckEks

cks+ Ek
+ cn+1s

}
ε(s).

Introducing

n∑
k=1

ckEks

cks+ Ek
+ cn+1s

△
=

s(Cns
n + Cn−1s

n−1 + · · ·+ C1s+ C0)

Dnsn +Dn−1sn−1 + · · ·+D1s+D0
, (5.4.4)

we have the stress-strain relationship:

(Dns
n + · · ·+D1s+D0)σ(s) = (Cns

n + · · ·+ C1s+ C0) sε(s),

which yields

n∑
j=0

Djσ
(j) =

n∑
j=0

Cjε
(j+1).

Namely, we have an ordinary differential equation of the n-th order with respect to σ while
of the n-th order with respect to ε̇.

Problems

1. Show eq. (5.3.3).

2. Show eq. (5.3.9).

3. Show a Maxwell model coincides with an elastic element when c → ∞ and a Maxwell
model coincides with a viscous element when E → ∞.

4. Show that eqs. (5.3.11)(5.3.13) can be converted each other.

5. Show that eqs. (5.3.14)(5.3.15) can be converted each other.
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