
Chapter 6

Inelastic Deformation

6.1 Multi-dimensional inelastic deformation models

We extend one-dimensional inelastic deformation models (Chapter 5) to multi-dimensional
inelastic deformation models under assumption that materials exhibit isotropic deformation.

Recall that the stress-strain relationship of an elastic material can be specified by a
constant E. In addition, two- or three-dimensional isotropic elastic deformation can be
formulated as follows:

σ = (λIλ + µIµ)ε (6.1.1)

where λ and µ denote Lamé’s constants and matrices Iλ and Iµ originate from the isotropy
of the material. Elasticity can be specified by two constants: λ and µ. These constants
determine normal elasticity and shear elasticity.

Recall that the stress-strain relationship of a viscoelastic material can be specified by
an operator: E + c d/dt. From the above observation, replacing two elastic constants in
eq. (6.1.1) by two viscoelastic operators yields two- or three-dimensional isotropic viscoelastic
deformation as follows:

σ = (λIλ + µIµ)ε (6.1.2)

where

λ = λela + λvis d

dt
, µ = µela + µvis d

dt
.

Two constants λela and µela specify elasticity of the material while λvis and µvis describe its
viscosity.

Recall that the stress-strain relationship of rheological models can be specified by a con-
volution form eq. (5.3.7) with a relaxation function r(t′− t). Then, two- or three-dimensional
Maxwell deformation can be described as follows:

σ(t) =

∫ t

0

R(t− t′) ε̇(t′) dt′, (6.1.3)

where 3×3 matrix R(t− t′) is referred to as a relaxation matrix, which determines the nature
of a two- or three-dimensional rheological deformation. Replacing two elastic constants in
eq. (6.1.1) by two relaxation functions yields a relaxation matrix of two- or three-dimensional
isotropic rheological deformation:

R(t− t′) = rλ(t− t′)Iλ + rµ(t− t′)Iµ. (6.1.4)
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.
Recalling relaxation function eq. (5.3.8) in one-dimensional Maxwell model, two relaxation

functions rλ(t− t′) and rµ(t− t′) in two- or three-dimensional isotropic Maxwell model turn
into:

rλ(t− t′) = λela exp

{
−λela

λvis
(t− t′)

}
, (6.1.5a)

rµ(t− t′) = µela exp

{
−µela

µvis
(t− t′)

}
. (6.1.5b)

Constants λela and µela specify elasticity of the material while λvis and µvis describe its
plasticity.

Recalling relaxation function eq. (5.3.12) in one-dimensional three-element model, two
relaxation functions rλ(t − t′) and rµ(t − t′) in two- or three-dimensional isotropic three-
element model turn into:

rλ(t− t′) =
λvis
2

λvis
1 + λvis

2

exp

{
− λela

λvis
1 + λvis

2

(t− t′)

}(
λela + λvis

1

d

dt

)
, (6.1.6a)

rµ(t− t′) =
µvis
2

µvis
1 + µvis

2

exp

{
− µela

µvis
1 + µvis

2

(t− t′)

}(
µela + µvis

1

d

dt

)
. (6.1.6b)

Constants λela and µela specify elasticity of the material, λvis
1 and µvis

1 describe its viscosity,
and λvis

2 and µvis
2 show its plasticity.

6.2 Nodal forces in inelastic deformation

The stress-strain relationship can be converted into a relationship between a set of forces
applied to nodal points and a set of displacements of the points. A set of elastic forces
applied to nodal points is given by

elastic force = −(λJλ + µJµ)uN,

where Jλ and Jµ are geometric matrices determined by object coordinate components of
nodal points. The above equation suggests that replacing Iλε by JλuN and Iµε by JµuN in
the stress-strain relationship eq. (6.1.1) of an elastic material yields the elastic force set.

From the above observation, replacing Iλε by JλuN and Iµε by JµuN in the stress-strain
relationship eq. (6.1.2) of a viscoelastic material yields a set of viscoelastic forces applied to
nodal points as follows:

viscoelastic force = −(λelaJλ + µelaJµ)uN − (λvisJλ + µvisJµ)u̇N. (6.2.1)

Replacing Iλε by JλuN and Iµε by JµuN in the stress-strain relationship of a rheological
material given in a convolution form eq. (5.3.7) yields a set of rheological forces applied to
nodal points as follows:

rheological force = −Jλ

∫ t

0

rλ(t− t′) u̇N(t
′) dt′ − Jµ

∫ t

0

rµ(t− t′) u̇N(t
′) dt′. (6.2.2)

Introducing

fλ(t) =

∫ t

0

rλ(t− t′) u̇N(t
′) dt′, (6.2.3a)

fµ(t) =

∫ t

0

rµ(t− t′) u̇N(t
′) dt′, (6.2.3b)

94



a set of rheological forces applied to nodal points is simply described as

rheological force = −Jλfλ(t)− Jµfµ(t). (6.2.4)

Recalling that relaxation functions in two- or three-dimensional isotropic Maxwell model
are given by eqs. (6.1.5a)(6.1.5b), we find

fλ(t) =

∫ t

0

λela exp

{
−λela

λvis
(t− t′)

}
u̇N(t

′) dt′,

fµ(t) =

∫ t

0

µela exp

{
−µela

µvis
(t− t′)

}
u̇N(t

′) dt′.

Differentiating that above two equations, we have

ḟλ = −λela

λvis
fλ + λelau̇N, (6.2.5a)

ḟµ = −µela

µvis
fµ + µelau̇N. (6.2.5b)

Note that the above two ordinary differential equations have the same form as eq. (5.3.5).
Namely, replacing σ, ε, E, and c in eq. (5.3.5) by fλ, uN, λ

ela, and λvis yields eq. (6.2.5a).
Similarly, replacing σ, ε, E, and c in eq. (5.3.5) by fµ, uN, µ

ela, and µvis yields eq. (6.2.5b).
Consequently, stress-strain relationship yields two ordinary differential equations with respect
to fλ and fµ. Then, nodal force vector is given by −Jλfλ − Jµfµ.

Recalling that relaxation functions in two- or three-dimensional isotropic three-element
model are given by eqs. (6.1.6a)(6.1.6b), we find

fλ(t) =

∫ t

0

λvis
2

λvis
1 + λvis

2

exp

{
− λela

λvis
1 + λvis

2

(t− t′)

}(
λela + λvis

1

d

dt

)
u̇N(t

′) dt′,

fµ(t) =

∫ t

0

µvis
2

µvis
1 + µvis

2

exp

{
− µela

µvis
1 + µvis

2

(t− t′)

}(
µela + µvis

1

d

dt

)
u̇N(t

′) dt′.

Differentiating that above two equations, we have

ḟλ = − λela

λvis
1 + λvis

2

fλ +
λelaλvis

2

λvis
1 + λvis

2

u̇N +
λvis
1 λvis

2

λvis
1 + λvis

2

üN, (6.2.6a)

ḟµ = − µela

µvis
1 + µvis

2

fµ +
µelaµvis

2

µvis
1 + µvis

2

u̇N +
µvis
1 µvis

2

µvis
1 + µvis

2

üN. (6.2.6b)

Note that the above two ordinary differential equations have the same form as eq. (5.3.11).
Namely, replacing σ, ε, E, c1, and c2 in eq. (5.3.11) by fλ, uN, λ

ela, λvis
1 , and λvis

2 yields
eq. (6.2.6a). Similarly, replacing σ, ε, E, c1, and c2 in eq. (5.3.11) by fµ, uN, µ

ela, µvis
1 , and

µvis
2 yields eq. (6.2.6b). Consequently, stress-strain relationship yields two ordinary differen-

tial equations with respect to fλ and fµ. Then, nodal force vector is given by −Jλfλ−Jµfµ.

6.3 Calculating inelastic deformation

Recall that dynamic deformation of an elastic body is formulated as eq. (4.3.2), yielding a
canonical form of a set of ordinary differential equations:

u̇N = vN[
M −A

−A⊤

] [
v̇N

λ

]
=

[
−KuN + f
C(uN,vN)

]
(6.3.1)

95



where C(uN,vN) originates from equations for stabilizing constraints.
Replacing a set of elastic forces −KuN by a set of viscoelastic forces −KuN − Bu̇N =

−KuN −BvN, we have a canonical form to calculate dynamic deformation of a viscoelastic
body:

u̇N = vN[
M −A

−A⊤

] [
v̇N

λ

]
=

[
−KuN −BvN + f

C(uN,vN)

]
(6.3.2)

The state variables of this canonical form consists of uN and vN.
Replacing a set of elastic forces −KuN by a set of rheological forces −Jλfλ − Jµfµ,

and adding ordinary differential equations with respect to fλ and fµ, we have a canonical
form to calculate dynamic deformation of a rheological body. In Maxwell model, adding
eqs. (6.2.5a)(6.2.5b), a canonical form to calculate rheological deformation is described as

u̇N = vN[
M −A

−A⊤

] [
v̇N

λ

]
=

[
−Jλfλ − Jµfµ + f

C(uN,vN)

]
ḟλ = −λela

λvis
fλ + λelavN

ḟµ = −µela

µvis
fµ + µelavN

(6.3.3)

The state variables of this canonical form consists of uN, vN, fλ, and fµ. Given uN, vN, fλ,

and fµ, this canonical form directly calculates their time-derivatives; u̇N, v̇N, ḟλ, and ḟµ. In
three-element model, adding eqs. (6.2.6a)(6.2.6b), a canonical form to calculate rheological
deformation is described as

u̇N = vN[
M −A

−A⊤

] [
v̇N

λ

]
=

[
−Jλfλ − Jµfµ + f

C(uN,vN)

]
ḟλ = − λela

λvis
1 + λvis

2

fλ +
λelaλvis

2

λvis
1 + λvis

2

vN +
λvis
1 λvis

2

λvis
1 + λvis

2

v̇N

ḟµ = − µela

µvis
1 + µvis

2

fµ +
µelaµvis

2

µvis
1 + µvis

2

vN +
µvis
1 µvis

2

µvis
1 + µvis

2

v̇N

(6.3.4)

The state variables of this canonical form consists of uN, vN, fλ, and fµ. Given uN, vN, fλ,
and fµ, the first and second equations calculate time-derivatives u̇N and v̇N. Then, applying

calculated v̇N to the third and fourth equations, we can calculate time-derivatives ḟλ, and ḟµ.
Classes Triangle_ThreeElementModel and Body_ThreeElementModel were defined. The
former is a subclass of Triangle and the latter is a subclass of Body. Instance of class
Triangle_ThreeElementModel or Body_ThreeElementModel includes physical parameters
specific to three-element model, λvis

1 , µvis
1 , λvis

2 , and µvis
2 .

Example Let us calculate the dynamic deformation of a two-dimensional rheological square
body of width w (Fig. 4.2). We apply three-element model to describe rheological deforma-
tion. Let us divide the square region into 3× 3× 2 triangles. During time interval [ 0, tpush ],
the bottom of the body is fixed to the floor and edge P14P15 moves downward at a constant
velocity vpush. During [ tpush, thold ], the bottom remains fixed and and edge P14P15 keeps
its position. During [ thold, tend ], the bottom remains fixed while P14P15 is released. Figure
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(a) 0.0 s (b) 0.5 s (c) 1.0 s (d) 2.0 s

(e) 2.1 s (f) 2.2 s (g) 2.3 s (h) 2.4 s

(i) 2.5 s (j) 3.0 s (k) 5.0 s (l) 7.0 s

Figure 6.1: Dynamic deformation of a rheological square body (3× 3× 2 triangles)

6.1 shows a snapshot of the computation result with w = 30 cm, h = 1 cm, E = 1.0MPa,
c1 = 40Pa · s, c2 = 2.0MPa · s, ν = 0.48, ρ = 1.0 g/cm3, tpush = 1.0 s, thold = 2.0 s, and
vpush = 16 cm/s. Deformation remains even after pushing motion is released. Figure 6.2
shows a snapshot of the computation result under a finer mesh; the square region consists of
9× 9× 2 triangles, resulting a detailed description on deformation.

6.4 Inhomogeneous rheological deformation

Let us formulate rheological deformation of an inhomogeneous body. Assume that a two-
dimensional body consists of a finite number of subregions, over each of which deformation
parameters are uniform. Let up

N be a collective vector of nodal point displacements involved
in subregion Sp. Note that inelastic deformation of subregion Sp causes nodal point forces
corresponding to up. Let f

p
N be a collective vector of the nodal point forces. Let Jp

λ and Jp
µ

be partial connection matrices of subregion Sp. Replacing nodal displacement vector uN in
eq. (6.2.2) by up

N as well as connection matrices Jλ and Jµ by partial connection matrices Jp
λ

and Jp
µ, we obtain

fp
N = −Jp

λ

∫ t

0

rpλ(t− t′) u̇p
N(t

′) dt′ − Jp
µ

∫ t

0

rpµ(t− t′) u̇p
N(t

′) dt′.
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(a) 0.0 s (b) 0.5 s (c) 1.0 s (d) 2.0 s

(e) 2.1 s (f) 2.2 s (g) 2.3 s (h) 2.4 s

(i) 2.5 s (j) 3.0 s (k) 5.0 s (l) 7.0 s

Figure 6.2: Dynamic deformation of a rheological square body (9× 9× 2 triangles)

Relaxation functions rpλ(t−t′) and rpµ(t−t′) are defined for individual subregions. Introducing

fp
λ(t) =

∫ t

0

rpλ(t− t′) u̇p
N(t

′) dt′,

fp
µ(t) =

∫ t

0

rpµ(t− t′) u̇p
N(t

′) dt′,

a set of nodal rheological forces is simply described as

fp
N = −Jp

λf
p
λ(t)− Jp

µf
p
µ(t).

Synthesizing nodal point forces of all subregions, we obtain the total nodal force vector:

fN =
⊕
p

fp
N

Note that the above calculation is similar to eq. (4.4.1), where three nodal forces correspond-
ing to individual triangles are distributed and added for the total nodal force vector. In
the above equation, three or more nodal forces corresponding to individual subregions are
distributed and added for the total nodal force vector.

Let us demonstrate the above calculation process by a body consisting of two subregions
(Fig. 6.3). Subregion S1 (darker color) consists of two triangles T1 = △P1P2P5 and T3 =
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h P3P2P1

P6P5P4

Figure 6.3: Body consisting of two subregions

△P5P4P2 while subregion S2 (lighter color) consists of two triangles T2 = △P2P3P5 and
T4 = △P6P5P3. Thus, subregion S1 involves nodal point P1, P2, P4, and P5 while subregion
S2 involves nodal point P2, P3, P5, and P6. Nodal force vectors of the two subregions are
described as

f1
N =


f1
1

f1
2

f1
4

f1
5

 , f2
N =


f2
2

f2
3

f2
5

f2
6


The total nodal force vector is then given by

fN = f1
N ⊕ f2

N =


f1
1

f1
2 + f2

2

f2
3

f1
4

f1
5 + f2

5

f2
6


The above equation provides a set of nodal point forces caused by the deformation of an
inhomogeneous body. Noting that (1, 2, 3, 4) block rows and columns of partial connection
matrix J1

λ correspond to P1, P2, P4, and P5, we find (1, 2, 3) × (1, 2, 3) blocks of J1,2,4
λ

(triangle T1) contribute to (1, 2, 3) × (1, 2, 3) blocks of J1
λ and (1, 2, 3) × (1, 2, 3) blocks of

J5,4,2
λ (triangle T3) contribute to (4, 3, 2) × (4, 3, 2) blocks of J1

λ. Similarly, (1, 2, 3, 4) block
rows and columns of partial connection matrix J2

λ correspond to P2, P3, P5, and P6, yielding

that (1, 2, 3) × (1, 2, 3) blocks of J2,3,5
λ (triangle T2) contribute to (1, 2, 3) × (1, 2, 3) blocks

of J2
λ and (1, 2, 3) × (1, 2, 3) blocks of J6,5,3

λ (triangle T4) contribute to (4, 3, 2) × (4, 3, 2)
blocks of J2

λ. Based on these correspondences, we can calculate partial connection matrices
of individual subregions.

Let us formulate rheological deformation under Maxwell model. Assume that the body
consists of ns subregions. Deformation parameters λela

p , λvis
p , µela

p , and µvis
p are uniform over

subregion Sp. Individual subregions may have different values of deformation parameters. A
canonical form to calculate rheological deformation is then described as

u̇N = vN[
M −A

−A⊤

] [
v̇N

λ

]
=

[
fN + f

C(uN,vN)

]
ḟp
λ = −

λela
p

λvis
p

fp
λ + λela

p vp
N, (p = 1, 2, · · · , ns)

ḟp
µ = −

µela
p

µvis
p

fp
µ + µelavp

N, (p = 1, 2, · · · , ns)

(6.4.1)

The state variables of this canonical form consists of uN, vN, f
1
λ through fn

λ , and f1
µ through

fn
µ . Vectors fp

λ and fp
µ correspond to subregion Sp. Given uN, vN, f

1
λ through fn

λ , and
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f1
µ through fn

µ , this canonical form directly calculates their time-derivatives; u̇N, v̇N, ḟ
1
λ

through ḟn
λ , and ḟ1

µ through ḟn
µ .

Let us formulate rheological deformation under three-element model. Assume that the
body consists of n subregions. Deformation parameters λela

p , λvis
1,p, λ

vis
2,p, µ

ela
p , µvis

1,p, and µvis
2,p are

uniform over subregion Sp. Individual subregions may have different values of deformation
parameters. A canonical form to calculate rheological deformation is then described as

u̇N = vN[
M −A

−A⊤

] [
v̇N

λ

]
=

[
fN + f

C(uN,vN)

]
ḟp
λ = −

λela
p

λvis
1,p + λvis

2,p

fp
λ +

λela
p λvis

2,p

λvis
1,p + λvis

2,p

vp
N +

λvis
1,pλ

vis
2,p

λvis
1,p + λvis

2,p

v̇p
N, (p = 1, 2, · · · , n)

ḟp
µ = −

µela
p

µvis
1,p + µvis

2,p

fp
µ +

µela
p µvis

2,p

µvis
1,p + µvis

2,p

vp
N +

µvis
1,pµ

vis
2,p

µvis
1,p + µvis

2,p

v̇p
N, (p = 1, 2, · · · , n)

(6.4.2)

The state variables of this canonical form consists of uN, vN, f
1
λ through fn

λ , and f1
µ through

fn
µ . Given uN, vN, f

1
λ through fn

λ , and f1
µ through fn

µ , the first and second equations calcu-
late time-derivatives u̇N and v̇N. Then, applying calculated v̇N to the third and fourth equa-
tions, we can calculate time-derivatives ḟ1

λ through ḟn
λ and ḟ1

µ through ḟn
µ . Consequently,

given state variables, we can calculate their time-derivatives, which provides a canonical form
of a set of ordinary differential equations.

Example Let us calculate rheological deformation of a horizontally layered body. We apply
three-element model. Class SubRegion_ThreeElementModel (a subclass of SubRegion) was
introduced. Instance of this class includes physical parameters specific to three-element
model, λvis

1 , µvis
1 , λvis

2 , and µvis
2 .

The layered body of width 10 cm and thickness h = 1 cm consists of two materials. Dark
region (subregion 1) corresponds to a harder material specified by E = 1.0MPa, c1 = 40Pa·s,
c2 = 2.0MPa · s, ν = 0.48, and ρ = 1.0 g/cm3 while light region (subregion 2) corresponds
to a softer material specified by E = 0.2MPa, c1 = 40Pa · s, c2 = 2.0MPa · s, ν = 0.48, and
ρ = 1.0 g/cm3. Namely, material in dark region is five-times harder than material in light
region. Subregion 1 consists of 4× 18 triangles and includes 60 nodal points, implying that
f1
λ and f1

µ are 60 dimensional vectors. Subregion 2 consists of 5× 18 triangles and includes
60 nodal points, implying that f2

λ and f2
µ are 60 dimensional vectors. State variable vector

in the canonical form is thus described as

q =


uN

vN

f1
λ

f2
λ

f1
µ

f2
µ


Vector q consists of 640 elements.

During time interval [ 0, tpush ], the bottom of the body is fixed to the floor and the middle
of the top surface moves downward at a constant velocity vpush. During [ tpush, thold ], the
bottom remains fixed and and the middle of the top surface keeps its position. During [ thold,
tend ], the bottom remains fixed while the middle of the top surface is released. Here we apply
tpush = 1.0 s, thold = 2.0 s, and vpush = 16 cm/s. We find that the softer layer (light region)
deforms more than the harder layers (dark region). This deformation of a layered rheological
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(a) 0.0 s (b) 0.5 s (c) 1.0 s (d) 2.0 s

(e) 2.1 s (f) 2.2 s (g) 2.3 s (h) 2.4 s

(i) 2.5 s (j) 3.0 s (k) 5.0 s (l) 7.0 s

Figure 6.4: Dynamic deformation of a horizontally layered rheological body (9×9×2 triangles)

body is different from deformation of a uniform rheological body (Fig. 6.2). The softer layer
expands outward more in this deformation.

Problems

1. Assuming that deformation of body material is characterized by parallel elastic model
(Section 5.4.2), formulate the nodal force vector of the body.
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