Chapter 7

Isotropy and Invariants

7.1 Isotropy

Isotropy in two-dimensional deformation Isotropy implies that a material shows the
same deformation property at any direction. We formulate isotropic elasticity in two-dimensional
deformation.

First, we formulate strain components along with an arbitrary direction. Let O—zy and
O-z'y’ be coordinate systems fixed to two-dimensional space. Let a be angle between z-axis
and z’-axis. Then, relationship between z, y coordinates and z’, v’ is given by

MBI

where C, = cosa and S, = sin a. Equivalently,

| | Co Sa T
y/ _Soc Coc Y
Let u be a two-dimensional displacement vector of an arbitrary point. Let [u, v]" be its

components at O—zy while [u/, v"]T be its components at O—z'y’. Then, we have the following
relationship:

ul| | Co —Sa u’

v | | Sa O, v’
Let € = [€44, €4y, 262y ]| be strain vector at O—zy while &’ = [4747, €yryr, 2647 | be strain
vector at O—z'y’. Namely,

T Y T
" ox) W oy’ Yoy Oz
ou’ o' ou' o

Exlyp! = 2526’3/’ =

_— Eyly! — — —_—
ox'’ VYR oy oy’ + ox’

Note that deformation can be formulated either in O-xy or O-a'y’.
Next, let us derive the relationship between € and &’. Noting that x depends on z’, 3
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with 9z’ /0x = C,, and 9y’ /0x = —S,,, we have

ou_ duor | oudy
Or  Ox' 9x Oy Ox

! _ / I /
A(Cou’ — Syv )Ca n A(Cou’ — Syv )(_Sa)

- oz’ oy’
ou’ o' ou' o
_ ot 20V ow oV
(O 7 + 5% ay + (—CuSa) <8y’ + 895’)
which directly yields
(7.1.1)

Exax = Cigz’x’ + S?ng/y’ + (7004504) : 25:&’74’

Similarly,

81}_811873:’ 811873/

dy 0z’ dy ' 9y By

! / li !/
A(Sau’ + Cyv >Sa n A(Sat’ + Cov )C

- ox' oy’ ¢
o’ o' ou' o
Qg2 277 I
=Sz B +C; ay + CuSa (ay’ + (%,)
which directly yields
(7.1.2)

2 2
Eyy = Soewa + Cheyy + CoSa - 2840y

Also, we have
0uor  ouoy | ovor | ovoy

ou  Ov 4 Bu Lo v
oy dy  Ox' dx 0Oy’ Ox

Jy + oxr  Ox' Oy
B ou'’ o' 9 a2y [OUW OV
=2CySa7— + (—2C’aSa)8—y, + (C5 —52) <8y’ + 8ac’>

“ 0z’
which directly yields
264y = 2C0Sasra + (—2C0Sa)eyy + (C2 — S2) - 26,1y (7.1.3)
Consequently, we have
e=P(a)¢€ (7.1.4)
where
c? S? —CoSy
P(a) = S2 c? CaSa (7.1.5)
2C,S, —2C,S, C?2-52

Note that matrix P(«) characterizes strain components along with an arbitrary direction.
Let us formulate linear isotropic elasticity. Let D be elasticity matrix at O—zy. Then,

strain energy density is formulated as (1/2)e " De. This strain energy density can be rewritten

as

2T De= ()T Pa)” D Pla) ()
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implying that elasticity matrix at O-z'y’ is described as P(a)" DP(«). Isotropic elasticity
requires a condition that elasticity matrix is invariant against angle o. Namely,

P(a)" D P(a)=D (7.1.6)

should be satisfied for an arbitrary « for isotropic elasticity. Let us describe symmetric matrix
D as

Dacx Dacy Dac'y
D=1 Day Dy, Dy,

Doy Dy, D,
Isotropic elasticity requires P(7/2)" D P(r/2) = D. Noting that
[0 1 0] [ Dew Doy Doy J[O 1 0
P(r/2)T DP(x/2)=|1 0 0 Dy, Dy, Dy, 1 00
00 1|| Dy Dyy Dyy |0 01
[ Dyy Dy Dy,
= Da:y Da::): Da:'y
| Dyy Doy Doy

we find D,, = Dy, and D,, = D,,. Then, elasticity matrix D can be described as
wa Da:y D:v'y
.D = ny Dxx Dx'y
Dyy Doy Doy
Isotropic elasticity requires P(7/4)" D P(n/4) = D. Noting that

P(n/4)" D P(n/4) =

Dyi/2+ Dyy/2 + 2Dy + D,y Dy /24 Dyy/2 — D, 0
Dyy/2+ Dyy/2 — Doy, Dyy2/2+ Dyy/2 — 2Dy + Doy 0
0 0 Dyy/2 — Dyy /2

we find D,y = 0 and Dyy — Dyy — 2D, = 0. Letting A = D,y and p = D,,, elasticity
matrix D can be described as

A4 2u A 0
D= A A+2u 0 (7.1.7)
0 0 W

The above equation can be described as

D =M+ pl, (7.1.8)
where
11 2
L=|11 , I, = 2 (7.1.9)
1

The above matrices satisfy

P(a) ' I\P(a) = I, P(a) I,P(a)=1, (7.1.10)
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for an arbitrary a. Consequently, we find that elasticity matrix D given in eq. (7.1.7) satisfies
isotropy condition eq. (7.1.6).

Material-specific constants A and p are referred to as Lamé’s constants. Lamé’s constants
are described by Young’s modulus E and Poisson’s ratio v as follows:

vE E

ATt P 2

Additionally, constant  is equal to shear elasticity modulus.
Let E = [Eyy, Eyy, 2E,y]" be Green strain with respect to O-zy and E' = [Eyy,
By, 2E., 17 be Green strain with respect to O—2'y’. Noting that

(7.1.11)

Uy = Cottly + (—CoSa)ttly + (—CaSa)vh + Sovy,
uy = CoSatihy + Chuly + (=S2)vh + (—CaSa)v,,
Uy = CaSattly + (—=S2)uly, 4+ Covly + (—CaSa)vy,
vy = S2ul, + CaSatiy 4 CoSavy + CZU;/

we find the following equations:

Epw =C2Epy + S2Eyy + (—CoSy) - 2E,1y (7.1.12a)
Eyy = SiEI/x/ + CgEy/y/ +C,Sy - 2Ex/y/ (7112b)
2E,y = 20480 By + (—2C0S0)Eyry + (C2 = S2) - 2,1, (7.1.12¢)

The above equations agree with egs. (7.1.1)(7.1.2)(7.1.3), implying that relationship between
E and E’ is formulated by egs. (7.1.4)(7.1.5). Consequently, elasticity matrix D can be
described as D = Al + ul,, even when we apply Green strain E instead of Cauchy strain €.
Namely, strain energy density is formulated as follows:

1

5ET(AA +ul,)E (7.1.13)
when material exhibits linear isotropic elasticity.
Isotropy in three-dimensional deformation Let O-zyz and O-z'y’z’ be coordinate

systems fixed to three-dimensional space. Assume that relationship between = [z, y, z]"
and ' = [2/, 3/, 2']" is described as = Rx’, where

is an orthogonal matrix. Equivalently, we have ' = R, which directly yields

x Az Ay QA x
/ _

Yy | =1 bs by b (]
!

z Cx Cy Cy z

Let u be a three-dimensional displacement vector of an arbitrary point. Let [u, v] T w be its
components at O-zyz while [u’, v, w']T be its components at O-z'y’2’. Then, we have the
following relationship:

U ag; by cg '
— !

v = ay by ¢ v

w a, b, c, w’
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Let € be strain vector at O—zyz while €’ be strain vector at O—z'y’z’. Strain components
then satisfy the following equations:

Egm = aiawlwl + biay/y/ + ciazzzr F byCy - 28y + Crly - 26000 + Agby - 2851y
Eyy = aflez/z/ -+ bz{:‘y/y/ -+ Cfﬁ:z’z’ -+ bycy . 25y’z’ + cyay - 2840 + ayby . 2595’@/
€,y = aﬁexlwz + bﬁay/yf + ciszfzf +b.c, 26y +Coa; 26,0 Fazh, - 26y
26y, = 20ya, €510 + 2bybeyy + 2cy2,8 504
+ (bycs + bacy) - 26y + (cyas + coay) - 260 + (ayb. + azby) - 2647y
2620 = 20,0505 + 20, by + 20,2454
+ (bocy + bgcs) - 262 + (C200 + cpaz) - 26,10 + (azby + azhs) - 264y
26y = 2050yEpr + 2brbyeyryr + 2cp2y€ 000
+ (bpcy +bycy) - 262 + (coay + Cyay) - 2655 + (azby + aybs) - 265,y

Consequently, we have the following mapping:

o=P(R)o’ (7.1.14)
where
ai bi ci brcy Cy Oy azby
%2; b12/ 022; bycy CyQy ayby
pry=| % B e baCs c2z azb: (7.1.15)

2aya, 2byb, 2cyz, byc. +bicy cya,+ciay  ayb. +azby
2a,a,; 2b,by 2c,zp; bycy +byc, ciap +cpa, ayby + agb,
2050y  2bzby  2cpzy  bpey +bycy  cpay +cyazr  agby + ayby

Note that matrix P(R), which depends on orthogonal matrix R, determines strain compo-
nents along with an arbitrary direction in three-dimensional space.

Assume that the material exhibits linear isotropic elasticity. Elastic matrix D then must
satisfy

P(R)"DP(R)=D (7.1.16)

for linear isotropic elasticity. Elasticity matrix D should be invariant with respect to the
exchange between y- and z-axes, z- and z-axes, and z- and y-axes. Thus, eq. (7.1.16) must
be satisfied for the mappings corresponding to the following permutation matrices:

1 1 1
To3 = 1 {1, T3 = 1 , Tio= 11
1 1 1

Solving P(ng)TD P(ng) = D7 P(T31)TD P(T31) = D7 and P(Tlg)TD P(Tlg) = l)7 we find
that the elasticity matrix can be described as

Da:a: Da:y Dzy Da:a Da:ﬂ -Da:ﬁ
Dwy Dwx Da;y DwB Dwa Dz,@
Dacy Dacy Dacx DmB Dac,B Daca
Dma Dxﬂ Da:B Daa Daﬁ Daﬁ
Da:,B Da:a Da:,@ Da,@ Daa Da,B

(7.1.17)




where Dyy, Doy, Daas Dag, Dz, Dzp are constant parameters. Elasticity matrix D should
be invariant with respect to the rotation around z-axis by angle /4. This rotation is given
by

VT 13
R.(m/4)=| 1/v2 1/v2
1

Solving P(R.(7/4))"D P(R.(n/4)) = D, we have Dy, = Dyy + 2Doa, Dog = 0, Dy = 0,
and D3 = 0. Letting A = Dy, and p = D4, the elasticity matrix can be described as

A2 A A
A A+2u A
p=|—2 A At (7.1.18)
I
I
7
The above equation can be described as
D = X\ + pl, (7.1.19)
where
1 1 1 2
1 1 1 2
n- |+t 1 I = as (7.1.20)
1
1
The above matrices satisfy
P(R)"I\,P(R) =1, P(R)"I,P(R)=1, (7.1.21)

for an arbitrary orthogonal matrix R. Consequently, we find that elasticity matrix D given
in eq. (7.1.18) satisfies isotropy condition eq. (7.1.16).

7.2 Invariants

Linear isotropy is characterized by matrices Iy and I,,. Let us investigate quantities invariant
against rotation. Here we describe two-dimensional strain in a matrix form:

e= { Sz Cuy } (7.2.1)
Exy Eyy

which is referred to as a strain tensor. Note that Jacobian of displacement vector w with
respect x yields partial derivatives:

o ou
C— du | Oz Oy | _ | ux uy
8$T @ @ Vg Uy

or Oy



implying that strain tensor is described as ¢ = (1/2)(CT + C). Characteristic equation of
matrix ¢ is given as

| AT —& | =A% = (cac + eyy) A + (€actyy — €2y)
Applying eqgs. (7.1.1)(7.1.2)(7.1.3) into the coefficients of the above equation, we find

Eaz T Eyy = Exrar + Eyry

2 2
ExzCyy — Egy = Ea/a’Eyly’ — Egryyr

Namely,
Iy =tre=cup +eyy (7.2.2)
Iy =det e = eppeyy — Eiy (7.2.3

are invariant with respect to rotation, suggesting that any function of I; and I, is invariant
against rotation. Let W (I, I5) be a strain energy density. Strain-stress relationship derived
from W (I, I5) exhibits isotropic elasticity. Letting Wy = W /91 and Wy = OW /015, we
have the strain-stress relationship as

ow
Ops = 9% = Wi(Iy, L) + Wa(I1, I3) €4y
ow
Tyy = = Wi(I1, ) + Wa(I1, 1) €
Ocyy
15)4 1
Ozy D(2e2y) 5 5(11, I2) - 2e4y

Consequently, strain energy density given by W (I, Is) characterizes isotropic elasticity.

The above discussion is applied to linear isotropic elasticity. Noting that e " Iye = I? and
e'l € =21 2 —41,, strain energy density of a linear isotropic material under two-dimensional
deformation is described as follows:

W(h, 1) = 3 (A + (2} — A1)}
Its partial derivatives are given as

Wi, I2) = (A +2p) L, Wa(I1, I2) = —2p
which yield the following stress-strain relationship:

oyy = A+ 2u) 11 + (=21)€za = Aexz + (A + 2p)gyy

1
Ogy = _5(_2/0 “ 284y = (1(264y)

that is
Ogx A+ 2/1: A Exx
Oyy | = A A+2p Eyy
Oxy H 2506?;

The above equations directly result in eq. (7.1.7).
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Let us describe three-dimensional strain in a matrix form:

Exx Exy Exz
€= | €y Eyy Eyz (7.2.4)

Letting C = Ou/0zx ' be Jacobian of displacement vector w with respect x, we find that
strain tensor is described as ¢ = (1/2)(C"T + C). Coefficients of characteristic equation of
matrix € determine invariants:

L =tre=cgpp+eyy+eszz (7.2.5)

Exx gwy Exz
Is=dete=| €3y €yy Ey- (7.2.7)
Exz Eyz Ezz

Let W (I4, I, I3) be a strain energy density. Strain-stress relationship derived from W (I, I, I3)
exhibits isotropic elasticity.

The above discussion is applied to linear isotropic elasticity. Noting that e " Iye = I? and
e'1,e = 21} —4I,, strain energy density of a linear isotropic material under three-dimensional
deformation is described as follows:

1
W (I, 1) = 3 {AI} + p(2I} — AL)}

The above equation results in eq. (7.1.18).

Problems

1. Show eq. (7.1.10).

[\

. Show egs. (7.1.12a)(7.1.12b)(7.1.12¢).

w

. Show eq. (7.1.17).

e

. Show eq. (7.1.18).
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