## Chapter 7

## Isotropy and Invariants

### 7.1 Isotropy

Isotropy in two-dimensional deformation Isotropy implies that a material shows the same deformation property at any direction. We formulate isotropic elasticity in two-dimensional deformation.

First, we formulate strain components along with an arbitrary direction. Let $\mathrm{O}-x y$ and $\mathrm{O}-x^{\prime} y^{\prime}$ be coordinate systems fixed to two-dimensional space. Let $\alpha$ be angle between $x$-axis and $x^{\prime}$-axis. Then, relationship between $x, y$ coordinates and $x^{\prime}, y^{\prime}$ is given by

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
C_{\alpha} & -S_{\alpha} \\
S_{\alpha} & C_{\alpha}
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

where $C_{\alpha}=\cos \alpha$ and $S_{\alpha}=\sin \alpha$. Equivalently,

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
C_{\alpha} & S_{\alpha} \\
-S_{\alpha} & C_{\alpha}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Let $\boldsymbol{u}$ be a two-dimensional displacement vector of an arbitrary point. Let $[u, v]^{\top}$ be its components at $\mathrm{O}-x y$ while $\left[u^{\prime}, v^{\prime}\right]^{\top}$ be its components at $\mathrm{O}-x^{\prime} y^{\prime}$. Then, we have the following relationship:

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{cc}
C_{\alpha} & -S_{\alpha} \\
S_{\alpha} & C_{\alpha}
\end{array}\right]\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]
$$

Let $\varepsilon=\left[\varepsilon_{x x}, \varepsilon_{y y}, 2 \varepsilon_{x y}\right]^{\top}$ be strain vector at $\mathrm{O}-x y$ while $\varepsilon^{\prime}=\left[\varepsilon_{x^{\prime} x^{\prime}}, \varepsilon_{y^{\prime} y^{\prime}}, 2 \varepsilon_{x^{\prime} y^{\prime}}\right]^{\top}$ be strain vector at $\mathrm{O}-x^{\prime} y^{\prime}$. Namely,

$$
\begin{aligned}
\varepsilon_{x x} & =\frac{\partial u}{\partial x}, & \varepsilon_{y y} & =\frac{\partial v}{\partial y},
\end{aligned} r \varepsilon_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}, ~\left(\varepsilon_{y^{\prime} y^{\prime}}=\frac{\partial v^{\prime}}{\partial y^{\prime}}, \quad 2 \varepsilon_{x^{\prime} y^{\prime}}=\frac{\partial u^{\prime}}{\partial y^{\prime}}+\frac{\partial v^{\prime}}{\partial x^{\prime}}\right.
$$

Note that deformation can be formulated either in $\mathrm{O}-x y$ or $\mathrm{O}-x^{\prime} y^{\prime}$.
Next, let us derive the relationship between $\varepsilon$ and $\varepsilon^{\prime}$. Noting that $x$ depends on $x^{\prime}, y^{\prime}$
with $\partial x^{\prime} / \partial x=C_{\alpha}$ and $\partial y^{\prime} / \partial x=-S_{\alpha}$, we have

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial x}+\frac{\partial u}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial x} \\
& =\frac{\partial\left(C_{\alpha} u^{\prime}-S_{\alpha} v^{\prime}\right)}{\partial x^{\prime}} C_{\alpha}+\frac{\partial\left(C_{\alpha} u^{\prime}-S_{\alpha} v^{\prime}\right)}{\partial y^{\prime}}\left(-S_{\alpha}\right) \\
& =C_{\alpha}^{2} \frac{\partial u^{\prime}}{\partial x^{\prime}}+S_{\alpha}^{2} \frac{\partial v^{\prime}}{\partial y^{\prime}}+\left(-C_{\alpha} S_{\alpha}\right)\left(\frac{\partial u^{\prime}}{\partial y^{\prime}}+\frac{\partial v^{\prime}}{\partial x^{\prime}}\right)
\end{aligned}
$$

which directly yields

$$
\begin{equation*}
\varepsilon_{x x}=C_{\alpha}^{2} \varepsilon_{x^{\prime} x^{\prime}}+S_{\alpha}^{2} \varepsilon_{y^{\prime} y^{\prime}}+\left(-C_{\alpha} S_{\alpha}\right) \cdot 2 \varepsilon_{x^{\prime} y^{\prime}} \tag{7.1.1}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
\frac{\partial v}{\partial y} & =\frac{\partial v}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial y}+\frac{\partial v}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial y} \\
& =\frac{\partial\left(S_{\alpha} u^{\prime}+C_{\alpha} v^{\prime}\right)}{\partial x^{\prime}} S_{\alpha}+\frac{\partial\left(S_{\alpha} u^{\prime}+C_{\alpha} v^{\prime}\right)}{\partial y^{\prime}} C_{\alpha} \\
& =S_{\alpha}^{2} \frac{\partial u^{\prime}}{\partial x^{\prime}}+C_{\alpha}^{2} \frac{\partial v^{\prime}}{\partial y^{\prime}}+C_{\alpha} S_{\alpha}\left(\frac{\partial u^{\prime}}{\partial y^{\prime}}+\frac{\partial v^{\prime}}{\partial x^{\prime}}\right)
\end{aligned}
$$

which directly yields

$$
\begin{equation*}
\varepsilon_{y y}=S_{\alpha}^{2} \varepsilon_{x^{\prime} x^{\prime}}+C_{\alpha}^{2} \varepsilon_{y^{\prime} y^{\prime}}+C_{\alpha} S_{\alpha} \cdot 2 \varepsilon_{x^{\prime} y^{\prime}} \tag{7.1.2}
\end{equation*}
$$

Also, we have

$$
\begin{aligned}
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} & =\frac{\partial u}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial y}+\frac{\partial u}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial y}+\frac{\partial v}{\partial x^{\prime}} \frac{\partial x^{\prime}}{\partial x}+\frac{\partial v}{\partial y^{\prime}} \frac{\partial y^{\prime}}{\partial x} \\
& =2 C_{\alpha} S_{\alpha} \frac{\partial u^{\prime}}{\partial x^{\prime}}+\left(-2 C_{\alpha} S_{\alpha}\right) \frac{\partial v^{\prime}}{\partial y^{\prime}}+\left(C_{\alpha}^{2}-S_{\alpha}^{2}\right)\left(\frac{\partial u^{\prime}}{\partial y^{\prime}}+\frac{\partial v^{\prime}}{\partial x^{\prime}}\right)
\end{aligned}
$$

which directly yields

$$
\begin{equation*}
2 \varepsilon_{x y}=2 C_{\alpha} S_{\alpha} \varepsilon_{x^{\prime} x^{\prime}}+\left(-2 C_{\alpha} S_{\alpha}\right) \varepsilon_{y^{\prime} y^{\prime}}+\left(C_{\alpha}^{2}-S_{\alpha}^{2}\right) \cdot 2 \varepsilon_{x^{\prime} y^{\prime}} \tag{7.1.3}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
\varepsilon=P(\alpha) \varepsilon^{\prime} \tag{7.1.4}
\end{equation*}
$$

where

$$
P(\alpha)=\left[\begin{array}{ccc}
C_{\alpha}^{2} & S_{\alpha}^{2} & -C_{\alpha} S_{\alpha}  \tag{7.1.5}\\
S_{\alpha}^{2} & C_{\alpha}^{2} & C_{\alpha} S_{\alpha} \\
2 C_{\alpha} S_{\alpha} & -2 C_{\alpha} S_{\alpha} & C_{\alpha}^{2}-S_{\alpha}^{2}
\end{array}\right]
$$

Note that matrix $P(\alpha)$ characterizes strain components along with an arbitrary direction.
Let us formulate linear isotropic elasticity. Let $D$ be elasticity matrix at $\mathrm{O}-x y$. Then, strain energy density is formulated as $(1 / 2) \varepsilon^{\top} D \varepsilon$. This strain energy density can be rewritten as

$$
\frac{1}{2} \varepsilon^{\top} D \varepsilon=\frac{1}{2}\left(\varepsilon^{\prime}\right)^{\top} P(\alpha)^{\top} D P(\alpha)\left(\varepsilon^{\prime}\right)
$$

implying that elasticity matrix at $\mathrm{O}-x^{\prime} y^{\prime}$ is described as $P(\alpha)^{\top} D P(\alpha)$. Isotropic elasticity requires a condition that elasticity matrix is invariant against angle $\alpha$. Namely,

$$
\begin{equation*}
P(\alpha)^{\top} D P(\alpha)=D \tag{7.1.6}
\end{equation*}
$$

should be satisfied for an arbitrary $\alpha$ for isotropic elasticity. Let us describe symmetric matrix $D$ as

$$
D=\left[\begin{array}{lll}
D_{x x} & D_{x y} & D_{x \gamma} \\
D_{x y} & D_{y y} & D_{y \gamma} \\
D_{x \gamma} & D_{y \gamma} & D_{\gamma \gamma}
\end{array}\right]
$$

Isotropic elasticity requires $P(\pi / 2)^{\top} D P(\pi / 2)=D$. Noting that

$$
\begin{aligned}
P(\pi / 2)^{\top} D P(\pi / 2) & =\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
D_{x x} & D_{x y} & D_{x \gamma} \\
D_{x y} & D_{y y} & D_{y \gamma} \\
D_{x \gamma} & D_{y \gamma} & D_{\gamma \gamma}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
D_{y y} & D_{x y} & D_{y \gamma} \\
D_{x y} & D_{x x} & D_{x \gamma} \\
D_{y \gamma} & D_{x \gamma} & D_{\gamma \gamma}
\end{array}\right]
\end{aligned}
$$

we find $D_{x x}=D_{y y}$ and $D_{x \gamma}=D_{y \gamma}$. Then, elasticity matrix $D$ can be described as

$$
D=\left[\begin{array}{lll}
D_{x x} & D_{x y} & D_{x \gamma} \\
D_{x y} & D_{x x} & D_{x \gamma} \\
D_{x \gamma} & D_{x \gamma} & D_{\gamma \gamma}
\end{array}\right]
$$

Isotropic elasticity requires $P(\pi / 4)^{\top} D P(\pi / 4)=D$. Noting that

$$
\begin{aligned}
& P(\pi / 4)^{\top} D P(\pi / 4)= \\
& {\left[\begin{array}{ccc}
D_{x x} / 2+D_{x y} / 2+2 D_{x \gamma}+D_{\gamma \gamma} & D_{x x} / 2+D_{x y} / 2-D_{\gamma \gamma} & 0 \\
D_{x x} / 2+D_{x y} / 2-D_{\gamma \gamma} & D_{x x} / 2+D_{x y} / 2-2 D_{x \gamma}+D_{\gamma \gamma} & 0 \\
0 & 0 & D_{x x} / 2-D_{x y} / 2
\end{array}\right]}
\end{aligned}
$$

we find $D_{x \gamma}=0$ and $D_{x x}-D_{x y}-2 D_{\gamma \gamma}=0$. Letting $\lambda=D_{x y}$ and $\mu=D_{\gamma \gamma}$, elasticity matrix $D$ can be described as

$$
D=\left[\begin{array}{ccc}
\lambda+2 \mu & \lambda & 0  \tag{7.1.7}\\
\lambda & \lambda+2 \mu & 0 \\
0 & 0 & \mu
\end{array}\right]
$$

The above equation can be described as

$$
\begin{equation*}
D=\lambda I_{\lambda}+\mu I_{\mu} \tag{7.1.8}
\end{equation*}
$$

where

$$
I_{\lambda}=\left[\begin{array}{ll}
1 & 1  \tag{7.1.9}\\
1 & 1 \\
&
\end{array}\right], \quad I_{\mu}=\left[\begin{array}{lll}
2 & & \\
& 2 & \\
& & 1
\end{array}\right]
$$

The above matrices satisfy

$$
\begin{equation*}
P(\alpha)^{\top} I_{\lambda} P(\alpha)=I_{\lambda}, \quad P(\alpha)^{\top} I_{\mu} P(\alpha)=I_{\mu} \tag{7.1.10}
\end{equation*}
$$

for an arbitrary $\alpha$. Consequently, we find that elasticity matrix $D$ given in eq. (7.1.7) satisfies isotropy condition eq. (7.1.6).

Material-specific constants $\lambda$ and $\mu$ are referred to as Lamé's constants. Lamé's constants are described by Young's modulus $E$ and Poisson's ratio $\nu$ as follows:

$$
\begin{equation*}
\lambda=\frac{\nu E}{(1+\nu)(1-2 \nu)}, \quad \mu=\frac{E}{2(1+\nu)} \tag{7.1.11}
\end{equation*}
$$

Additionally, constant $\mu$ is equal to shear elasticity modulus.
Let $\boldsymbol{E}=\left[E_{x x}, E_{y y}, 2 E_{x y}\right]^{\top}$ be Green strain with respect to $\mathrm{O}-x y$ and $\boldsymbol{E}^{\prime}=\left[E_{x^{\prime} x^{\prime}}\right.$, $\left.E_{y^{\prime} y^{\prime}}, 2 E_{x^{\prime} y^{\prime}}\right]^{\top}$ be Green strain with respect to $\mathrm{O}-x^{\prime} y^{\prime}$. Noting that

$$
\begin{aligned}
& u_{x}=C_{\alpha}^{2} u_{x^{\prime}}^{\prime}+\left(-C_{\alpha} S_{\alpha}\right) u_{y^{\prime}}^{\prime}+\left(-C_{\alpha} S_{\alpha}\right) v_{x^{\prime}}^{\prime}+S_{\alpha}^{2} v_{y^{\prime}}^{\prime} \\
& u_{y}=C_{\alpha} S_{\alpha} u_{x^{\prime}}^{\prime}+C_{\alpha}^{2} u_{y^{\prime}}^{\prime}+\left(-S_{\alpha}^{2}\right) v_{x^{\prime}}^{\prime}+\left(-C_{\alpha} S_{\alpha}\right) v_{y^{\prime}}^{\prime} \\
& v_{x}=C_{\alpha} S_{\alpha} u_{x^{\prime}}^{\prime}+\left(-S_{\alpha}^{2}\right) u_{y^{\prime}}^{\prime}+C_{\alpha}^{2} v_{x^{\prime}}^{\prime}+\left(-C_{\alpha} S_{\alpha}\right) v_{y^{\prime}}^{\prime} \\
& v_{y}=S_{\alpha}^{2} u_{x^{\prime}}^{\prime}+C_{\alpha} S_{\alpha} u_{y^{\prime}}^{\prime}+C_{\alpha} S_{\alpha} v_{x^{\prime}}^{\prime}+C_{\alpha}^{2} v_{y^{\prime}}^{\prime}
\end{aligned}
$$

we find the following equations:

$$
\begin{align*}
E_{x x} & =C_{\alpha}^{2} E_{x^{\prime} x^{\prime}}+S_{\alpha}^{2} E_{y^{\prime} y^{\prime}}+\left(-C_{\alpha} S_{\alpha}\right) \cdot 2 E_{x^{\prime} y^{\prime}}  \tag{7.1.12a}\\
E_{y y} & =S_{\alpha}^{2} E_{x^{\prime} x^{\prime}}+C_{\alpha}^{2} E_{y^{\prime} y^{\prime}}+C_{\alpha} S_{\alpha} \cdot 2 E_{x^{\prime} y^{\prime}}  \tag{7.1.12b}\\
2 E_{x y} & =2 C_{\alpha} S_{\alpha} E_{x^{\prime} x^{\prime}}+\left(-2 C_{\alpha} S_{\alpha}\right) E_{y^{\prime} y^{\prime}}+\left(C_{\alpha}^{2}-S_{\alpha}^{2}\right) \cdot 2 E_{x^{\prime} y^{\prime}} \tag{7.1.12c}
\end{align*}
$$

The above equations agree with eqs. (7.1.1)(7.1.2)(7.1.3), implying that relationship between $\boldsymbol{E}$ and $\boldsymbol{E}^{\prime}$ is formulated by eqs. (7.1.4)(7.1.5). Consequently, elasticity matrix $D$ can be described as $D=\lambda I_{\lambda}+\mu I_{\mu}$ even when we apply Green strain $\boldsymbol{E}$ instead of Cauchy strain $\boldsymbol{\varepsilon}$. Namely, strain energy density is formulated as follows:

$$
\begin{equation*}
\frac{1}{2} \boldsymbol{E}^{\top}\left(\lambda I_{\lambda}+\mu I_{\mu}\right) \boldsymbol{E} \tag{7.1.13}
\end{equation*}
$$

when material exhibits linear isotropic elasticity.
Isotropy in three-dimensional deformation Let $\mathrm{O}-x y z$ and $\mathrm{O}-x^{\prime} y^{\prime} z^{\prime}$ be coordinate systems fixed to three-dimensional space. Assume that relationship between $\boldsymbol{x}=[x, y, z]^{\top}$ and $\boldsymbol{x}^{\prime}=\left[x^{\prime}, y^{\prime}, z^{\prime}\right]^{\top}$ is described as $\boldsymbol{x}=R \boldsymbol{x}^{\prime}$, where

$$
R=\left[\begin{array}{ccc}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right]
$$

is an orthogonal matrix. Equivalently, we have $\boldsymbol{x}^{\prime}=R^{\top} \boldsymbol{x}$, which directly yields

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Let $\boldsymbol{u}$ be a three-dimensional displacement vector of an arbitrary point. Let $[u, v]^{\top} w$ be its components at $\mathrm{O}-x y z$ while $\left[u^{\prime}, v^{\prime}, w^{\prime}\right]^{\top}$ be its components at $\mathrm{O}-x^{\prime} y^{\prime} z^{\prime}$. Then, we have the following relationship:

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right]\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]
$$

Let $\boldsymbol{\varepsilon}$ be strain vector at $\mathrm{O}-x y z$ while $\varepsilon^{\prime}$ be strain vector at $\mathrm{O}-x^{\prime} y^{\prime} z^{\prime}$. Strain components then satisfy the following equations:

$$
\begin{aligned}
\varepsilon_{x x} & =a_{x}^{2} \varepsilon_{x^{\prime} x^{\prime}}+b_{x}^{2} \varepsilon_{y^{\prime} y^{\prime}}+c_{x}^{2} \varepsilon_{z^{\prime} z^{\prime}}+b_{x} c_{x} \cdot 2 \varepsilon_{y^{\prime} z^{\prime}}+c_{x} a_{x} \cdot 2 \varepsilon_{z^{\prime} x^{\prime}}+a_{x} b_{x} \cdot 2 \varepsilon_{x^{\prime} y^{\prime}} \\
\varepsilon_{y y} & =a_{y}^{2} \varepsilon_{x^{\prime} x^{\prime}}+b_{y}^{2} \varepsilon_{y^{\prime} y^{\prime}}+c_{y}^{2} \varepsilon_{z^{\prime} z^{\prime}}+b_{y} c_{y} \cdot 2 \varepsilon_{y^{\prime} z^{\prime}}+c_{y} a_{y} \cdot 2 \varepsilon_{z^{\prime} x^{\prime}}+a_{y} b_{y} \cdot 2 \varepsilon_{x^{\prime} y^{\prime}} \\
\varepsilon_{z z} & =a_{z}^{2} \varepsilon_{x^{\prime} x^{\prime}}+b_{z}^{2} \varepsilon_{y^{\prime} y^{\prime}}+c_{z}^{2} \varepsilon_{z^{\prime} z^{\prime}}+b_{z} c_{z} \cdot 2 \varepsilon_{y^{\prime} z^{\prime}}+c_{z} a_{z} \cdot 2 \varepsilon_{z^{\prime} x^{\prime}}+a_{z} b_{z} \cdot 2 \varepsilon_{x^{\prime} y^{\prime}} \\
2 \varepsilon_{y z} & =2 a_{y} a_{z} \varepsilon_{x^{\prime} x^{\prime}}+2 b_{y} b_{z} \varepsilon_{y^{\prime} y^{\prime}}+2 c_{y} z_{z} \varepsilon_{z^{\prime} z^{\prime}} \\
& +\left(b_{y} c_{z}+b_{z} c_{y}\right) \cdot 2 \varepsilon_{y^{\prime} z^{\prime}}+\left(c_{y} a_{z}+c_{z} a_{y}\right) \cdot 2 \varepsilon_{z^{\prime} x^{\prime}}+\left(a_{y} b_{z}+a_{z} b_{y}\right) \cdot 2 \varepsilon_{x^{\prime} y^{\prime}} \\
2 \varepsilon_{z x} & =2 a_{z} a_{x} \varepsilon_{x^{\prime} x^{\prime}}+2 b_{z} b_{x} \varepsilon_{y^{\prime} y^{\prime}}+2 c_{z} z_{x} \varepsilon_{z^{\prime} z^{\prime}} \\
& +\left(b_{z} c_{x}+b_{x} c_{z}\right) \cdot 2 \varepsilon_{y^{\prime} z^{\prime}}+\left(c_{z} a_{x}+c_{x} a_{z}\right) \cdot 2 \varepsilon_{z^{\prime} x^{\prime}}+\left(a_{z} b_{x}+a_{x}\right) \cdot 2 \varepsilon_{x^{\prime} y^{\prime}} \\
2 \varepsilon_{x y} & =2 a_{x} a_{y} \varepsilon_{x^{\prime} x^{\prime}}+2 b_{x} b_{y} \varepsilon_{y^{\prime} y^{\prime}}+2 c_{x} z_{y} \varepsilon_{z^{\prime} z^{\prime}} \\
& +\left(b_{x} c_{y}+b_{y} c_{x}\right) \cdot 2 \varepsilon_{y^{\prime} z^{\prime}}+\left(c_{x} a_{y}+c_{y} a_{x}\right) \cdot 2 \varepsilon_{z^{\prime} x^{\prime}}+\left(a_{x} b_{y}+a_{y} b_{x}\right) \cdot 2 \varepsilon_{x^{\prime} y^{\prime}}
\end{aligned}
$$

Consequently, we have the following mapping:

$$
\begin{equation*}
\boldsymbol{\sigma}=P(R) \boldsymbol{\sigma}^{\prime} \tag{7.1.14}
\end{equation*}
$$

where

$$
P(R)=\left[\begin{array}{cccccc}
a_{x}^{2} & b_{x}^{2} & c_{x}^{2} & b_{x} c_{x} & c_{x} a_{x} & a_{x} b_{x}  \tag{7.1.15}\\
a_{y}^{2} & b_{y}^{2} & c_{y}^{2} & b_{y} c_{y} & c_{y} a_{y} & a_{y} b_{y} \\
a_{z}^{2} & b_{z}^{2} & c_{z}^{2} & b_{z} c_{z} & c_{z} a_{z} & a_{z} b_{z} \\
2 a_{y} a_{z} & 2 b_{y} b_{z} & 2 c_{y} z_{z} & b_{y} c_{z}+b_{z} c_{y} & c_{y} a_{z}+c_{z} a_{y} & a_{y} b_{z}+a_{z} b_{y} \\
2 a_{z} a_{x} & 2 b_{z} b_{x} & 2 c_{z} z_{x} & b_{z} c_{x}+b_{x} c_{z} & c_{z} a_{x}+c_{x} a_{z} & a_{z} b_{x}+a_{x} b_{z} \\
2 a_{x} a_{y} & 2 b_{x} b_{y} & 2 c_{x} z_{y} & b_{x} c_{y}+b_{y} c_{x} & c_{x} a_{y}+c_{y} a_{x} & a_{x} b_{y}+a_{y} b_{x}
\end{array}\right]
$$

Note that matrix $P(R)$, which depends on orthogonal matrix $R$, determines strain components along with an arbitrary direction in three-dimensional space.

Assume that the material exhibits linear isotropic elasticity. Elastic matrix $D$ then must satisfy

$$
\begin{equation*}
P(R)^{\top} D P(R)=D \tag{7.1.16}
\end{equation*}
$$

for linear isotropic elasticity. Elasticity matrix $D$ should be invariant with respect to the exchange between $y$ - and $z$-axes, $z$ - and $x$-axes, and $x$ - and $y$-axes. Thus, eq. (7.1.16) must be satisfied for the mappings corresponding to the following permutation matrices:

$$
T_{23}=\left[\begin{array}{lll}
1 & & \\
& & 1 \\
& 1 &
\end{array}\right], \quad T_{31}=\left[\begin{array}{lll} 
& & 1 \\
& 1 & \\
1 & &
\end{array}\right], \quad T_{12}=\left[\begin{array}{lll} 
& 1 & \\
1 & & \\
& & 1
\end{array}\right]
$$

Solving $P\left(T_{23}\right)^{\top} D P\left(T_{23}\right)=D, P\left(T_{31}\right)^{\top} D P\left(T_{31}\right)=D$, and $P\left(T_{12}\right)^{\top} D P\left(T_{12}\right)=D$, we find that the elasticity matrix can be described as

$$
D=\left[\begin{array}{ccc|ccc}
D_{x x} & D_{x y} & D_{x y} & D_{x \alpha} & D_{x \beta} & D_{x \beta}  \tag{7.1.17}\\
D_{x y} & D_{x x} & D_{x y} & D_{x \beta} & D_{x \alpha} & D_{x \beta} \\
D_{x y} & D_{x y} & D_{x x} & D_{x \beta} & D_{x \beta} & D_{x \alpha} \\
\hline D_{x \alpha} & D_{x \beta} & D_{x \beta} & D_{\alpha \alpha} & D_{\alpha \beta} & D_{\alpha \beta} \\
D_{x \beta} & D_{x \alpha} & D_{x \beta} & D_{\alpha \beta} & D_{\alpha \alpha} & D_{\alpha \beta} \\
D_{x \beta} & D_{x \beta} & D_{x \alpha} & D_{\alpha \beta} & D_{\alpha \beta} & D_{\alpha \alpha}
\end{array}\right]
$$

where $D_{x x}, D_{x y}, D_{\alpha \alpha}, D_{\alpha \beta}, D_{x \alpha}, D_{x \beta}$ are constant parameters. Elasticity matrix $D$ should be invariant with respect to the rotation around $z$-axis by angle $\pi / 4$. This rotation is given by

$$
R_{z}(\pi / 4)=\left[\begin{array}{ccc}
1 / \sqrt{2} & -1 / \sqrt{2} & \\
1 / \sqrt{2} & 1 / \sqrt{2} & \\
& & 1
\end{array}\right]
$$

Solving $P\left(R_{z}(\pi / 4)\right)^{\top} D P\left(R_{z}(\pi / 4)\right)=D$, we have $D_{x x}=D_{x y}+2 D_{\alpha \alpha}, D_{\alpha \beta}=0, D_{x \alpha}=0$, and $D_{x \beta}=0$. Letting $\lambda=D_{x y}$ and $\mu=D_{\alpha \alpha}$, the elasticity matrix can be described as

$$
D=\left[\begin{array}{ccc|ccc}
\lambda+2 \mu & \lambda & \lambda & & &  \tag{7.1.18}\\
\lambda & \lambda+2 \mu & \lambda & & & \\
\lambda & \lambda & \lambda+2 \mu & & & \\
\hline & & & \mu & & \\
& & & & \mu & \\
& & & & & \mu
\end{array}\right]
$$

The above equation can be described as

$$
\begin{equation*}
D=\lambda I_{\lambda}+\mu I_{\mu} \tag{7.1.19}
\end{equation*}
$$

where

$$
I_{\lambda}=\left[\begin{array}{lll|l}
1 & 1 & 1 &  \tag{7.1.20}\\
1 & 1 & 1 & \\
1 & 1 & 1 & \\
\hline & & & \\
& & &
\end{array}\right], \quad I_{\mu}=\left[\begin{array}{lll|lll}
2 & & & & & \\
& 2 & & & & \\
& & 2 & & & \\
\hline & & & 1 & & \\
& & & 1 & \\
& & & & 1
\end{array}\right]
$$

The above matrices satisfy

$$
\begin{equation*}
P(R)^{\top} I_{\lambda} P(R)=I_{\lambda}, \quad P(R)^{\top} I_{\mu} P(R)=I_{\mu} \tag{7.1.21}
\end{equation*}
$$

for an arbitrary orthogonal matrix $R$. Consequently, we find that elasticity matrix $D$ given in eq. (7.1.18) satisfies isotropy condition eq. (7.1.16).

### 7.2 Invariants

Linear isotropy is characterized by matrices $I_{\lambda}$ and $I_{\mu}$. Let us investigate quantities invariant against rotation. Here we describe two-dimensional strain in a matrix form:

$$
\varepsilon=\left[\begin{array}{ll}
\varepsilon_{x x} & \varepsilon_{x y}  \tag{7.2.1}\\
\varepsilon_{x y} & \varepsilon_{y y}
\end{array}\right]
$$

which is referred to as a strain tensor. Note that Jacobian of displacement vector $\boldsymbol{u}$ with respect $\boldsymbol{x}$ yields partial derivatives:

$$
C=\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}^{\top}}=\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]
$$

implying that strain tensor is described as $\varepsilon=(1 / 2)\left(C^{\top}+C\right)$. Characteristic equation of matrix $\varepsilon$ is given as

$$
|\lambda I-\varepsilon|=\lambda^{2}-\left(\varepsilon_{x x}+\varepsilon_{y y}\right) \lambda+\left(\varepsilon_{x x} \varepsilon_{y y}-\varepsilon_{x y}^{2}\right)
$$

Applying eqs. (7.1.1)(7.1.2)(7.1.3) into the coefficients of the above equation, we find

$$
\begin{aligned}
\varepsilon_{x x}+\varepsilon_{y y} & =\varepsilon_{x^{\prime} x^{\prime}}+\varepsilon_{y^{\prime} y^{\prime}} \\
\varepsilon_{x x} \varepsilon_{y y}-\varepsilon_{x y}^{2} & =\varepsilon_{x^{\prime} x^{\prime}} \varepsilon_{y^{\prime} y^{\prime}}-\varepsilon_{x^{\prime} y^{\prime}}^{2}
\end{aligned}
$$

Namely,

$$
\begin{align*}
& I_{1}=\operatorname{tr} \varepsilon=\varepsilon_{x x}+\varepsilon_{y y}  \tag{7.2.2}\\
& I_{2}=\operatorname{det} \varepsilon=\varepsilon_{x x} \varepsilon_{y y}-\varepsilon_{x y}^{2} \tag{7.2.3}
\end{align*}
$$

are invariant with respect to rotation, suggesting that any function of $I_{1}$ and $I_{2}$ is invariant against rotation. Let $W\left(I_{1}, I_{2}\right)$ be a strain energy density. Strain-stress relationship derived from $W\left(I_{1}, I_{2}\right)$ exhibits isotropic elasticity. Letting $W_{1}=\partial W / \partial I_{1}$ and $W_{2}=\partial W / \partial I_{2}$, we have the strain-stress relationship as

$$
\begin{aligned}
\sigma_{x x} & =\frac{\partial W}{\partial \varepsilon_{x x}}=W_{1}\left(I_{1}, I_{2}\right)+W_{2}\left(I_{1}, I_{2}\right) \varepsilon_{y y} \\
\sigma_{y y} & =\frac{\partial W}{\partial \varepsilon_{y y}}=W_{1}\left(I_{1}, I_{2}\right)+W_{2}\left(I_{1}, I_{2}\right) \varepsilon_{x x} \\
\sigma_{x y} & =\frac{\partial W}{\partial\left(2 \varepsilon_{x y}\right)}=-\frac{1}{2} W_{2}\left(I_{1}, I_{2}\right) \cdot 2 \varepsilon_{x y}
\end{aligned}
$$

Consequently, strain energy density given by $W\left(I_{1}, I_{2}\right)$ characterizes isotropic elasticity.
The above discussion is applied to linear isotropic elasticity. Noting that $\varepsilon^{\top} I_{\lambda} \varepsilon=I_{1}^{2}$ and $\varepsilon^{\top} I_{\mu} \varepsilon=2 I_{1}^{2}-4 I_{2}$, strain energy density of a linear isotropic material under two-dimensional deformation is described as follows:

$$
W\left(I_{1}, I_{2}\right)=\frac{1}{2}\left\{\lambda I_{1}^{2}+\mu\left(2 I_{1}^{2}-4 I_{2}\right)\right\}
$$

Its partial derivatives are given as

$$
W_{1}\left(I_{1}, I_{2}\right)=(\lambda+2 \mu) I_{1}, \quad W_{2}\left(I_{1}, I_{2}\right)=-2 \mu
$$

which yield the following stress-strain relationship:

$$
\begin{aligned}
\sigma_{x x} & =(\lambda+2 \mu) I_{1}+(-2 \mu) \varepsilon_{y y}=(\lambda+2 \mu) \varepsilon_{x x}+\lambda \varepsilon_{y y} \\
\sigma_{y y} & =(\lambda+2 \mu) I_{1}+(-2 \mu) \varepsilon_{x x}=\lambda \varepsilon_{x x}+(\lambda+2 \mu) \varepsilon_{y y} \\
\sigma_{x y} & =-\frac{1}{2}(-2 \mu) \cdot 2 \varepsilon_{x y}=\mu\left(2 \varepsilon_{x y}\right)
\end{aligned}
$$

that is

$$
\left[\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda+2 \mu & \lambda & \\
\lambda & \lambda+2 \mu & \\
& & \mu
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
2 \varepsilon_{x y}
\end{array}\right]
$$

The above equations directly result in eq. (7.1.7).

Let us describe three-dimensional strain in a matrix form:

$$
\varepsilon=\left[\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z}  \tag{7.2.4}\\
\varepsilon_{x y} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z z}
\end{array}\right]
$$

Letting $C=\partial \boldsymbol{u} / \partial \boldsymbol{x}^{\top}$ be Jacobian of displacement vector $\boldsymbol{u}$ with respect $\boldsymbol{x}$, we find that strain tensor is described as $\varepsilon=(1 / 2)\left(C^{\top}+C\right)$. Coefficients of characteristic equation of matrix $\varepsilon$ determine invariants:

$$
\begin{align*}
& I_{1}=\operatorname{tr} \varepsilon=\varepsilon_{x x}+\varepsilon_{y y}+\varepsilon_{z z}  \tag{7.2.5}\\
& I_{2}=\operatorname{tr} \varepsilon=\left|\begin{array}{ll}
\varepsilon_{x x} & \varepsilon_{x y} \\
\varepsilon_{x y} & \varepsilon_{y y}
\end{array}\right|+\left|\begin{array}{ll}
\varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{y z} & \varepsilon_{z z}
\end{array}\right|+\left|\begin{array}{ll}
\varepsilon_{z z} & \varepsilon_{z x} \\
\varepsilon_{z x} & \varepsilon_{x x}
\end{array}\right|  \tag{7.2.6}\\
& I_{3}=\operatorname{det} \varepsilon=\left|\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{x y} & \varepsilon_{x z} \\
\varepsilon_{x y} & \varepsilon_{y y} & \varepsilon_{y z} \\
\varepsilon_{x z} & \varepsilon_{y z} & \varepsilon_{z z}
\end{array}\right| \tag{7.2.7}
\end{align*}
$$

Let $W\left(I_{1}, I_{2}, I_{3}\right)$ be a strain energy density. Strain-stress relationship derived from $W\left(I_{1}, I_{2}, I_{3}\right)$ exhibits isotropic elasticity.

The above discussion is applied to linear isotropic elasticity. Noting that $\varepsilon^{\top} I_{\lambda} \varepsilon=I_{1}^{2}$ and $\varepsilon^{\top} I_{\mu} \varepsilon=2 I_{1}^{2}-4 I_{2}$, strain energy density of a linear isotropic material under three-dimensional deformation is described as follows:

$$
W\left(I_{1}, I_{2}\right)=\frac{1}{2}\left\{\lambda I_{1}^{2}+\mu\left(2 I_{1}^{2}-4 I_{2}\right)\right\}
$$

The above equation results in eq. (7.1.18).

## Problems

1. Show eq. (7.1.10).
2. Show eqs. (7.1.12a)(7.1.12b)(7.1.12c).
3. Show eq. (7.1.17).
4. Show eq. (7.1.18).
