Mechanics of Soft Bodies

Shinichi Hirai

Dept. Robotics, Ritsumeikan Univ.

Agenda

Soft Body Models

- 2 Strain and Stress
- 3 One-dimensional Finite Element Method

Two/Three-dimensional Finite Element Method

5 Summary

Finite Element Method (FEM)

inflatable link simulation

S, Mises SNEG, (fraction = -1.0) (Avg: 75%)

Shinichi Hirai (Dept. Robotics, Ritsumeikan

Mechanics of Soft Bodies

Soft Body Models

One-dimensional Soft Body Model

one-dimensional soft robot AB acts as

Can we conclude that AB moves but does not deform?

One-dimensional Soft Body Model

One-dimensional Soft Body Model

the motion and deformation: specified by function u(x), where $x \in [0, L]$

Two-dimensional Soft Body Model two-dimensional soft robot S acts as

natural state moved and deformed state

The motion and deformation: specified by a vector function u(x, y), that is, by its two components u(x, y) and v(x, y)

Three-dimensional Soft Body Model three-dimensional soft robot V acts as

natural state moved and deformed state

The motion and deformation: specified by a vector function u(x, y, z), that is, by its three components u(x, y, z), v(x, y, z), and w(x, y, z)

Approach

Energies

 $\begin{array}{ll} \mbox{motion} & \mbox{kinetic energy } T \\ \mbox{deformation} & \mbox{strain potential energy } U \\ & \mbox{strain and stress} \end{array}$

Calculation

finite element approximation divide-and-conquer approach piecewise linear approximation

Strain and Stress (Units)

One-dimensional Deformation

One-dimensional Deformation

extension =
$$u(x + dx) - u(x)$$

strain = $\frac{\text{extension}}{\text{length}}$
= $\frac{u(x + dx) - u(x)}{dx} \approx \frac{\partial u}{\partial x}$

Strain
$$\varepsilon = \frac{\partial u}{\partial x}$$

Elasticity relationship between stress σ and strain ε

Elasticity

extending uniform cylinder

energy

energy

energy

Ν	Nm	_ energy
m^2	m ³	volume

 $\frac{N}{m^2} = \frac{N m}{m^3} = \frac{\text{energy}}{\text{volume}}$

energy

Strain Potential Energy

energy density of one-dimensional deformation

$$\frac{1}{2}E\varepsilon^2 = \frac{1}{2}E\left(\frac{\partial u}{\partial x}\right)^2$$

volume A dxstrain potential energy

$$U = \int_0^L (\text{energy density}) \cdot (\text{volume})$$
$$= \int_0^L \frac{1}{2} E\left(\frac{\partial u}{\partial x}\right)^2 A \, \mathrm{d}x = \int_0^L \frac{1}{2} EA\left(\frac{\partial u}{\partial x}\right)^2 \mathrm{d}x$$

Kinetic Energy velocity of point P(x)

$$\dot{u}=\frac{\partial u}{\partial t}$$

mass of small region P(x)P(x + dx)

$$(\mathsf{density}) \cdot (\mathsf{volume}) = \rho \cdot A \, \mathrm{d}x$$

kinetic energy

$$T = \int_0^L \frac{1}{2} (\text{mass}) (\text{velocity})^2$$
$$= \int_0^L \frac{1}{2} \rho A \left(\frac{\partial u}{\partial t}\right)^2 dx$$

One-dimensional Finite Element Method

energies

strain potential energy

$$U = \int_0^L \frac{1}{2} EA\left(\frac{\partial u}{\partial x}\right)^2 \mathrm{d}x$$

kinetic energy

$$T = \int_0^L \frac{1}{2} \rho A \left(\frac{\partial u}{\partial t}\right)^2 \mathrm{d}x$$

How calculate energies in integral forms?

Divide-and-Conquer Approach

divide

$$\int_0^L = \int_{x_1}^{x_2} + \int_{x_2}^{x_3} + \int_{x_3}^{x_4} + \int_{x_4}^{x_5}$$

apply piecewise linear approximation

$$\int_{x_i}^{x_j} = \frac{1}{2} \begin{bmatrix} u_i & u_j \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix}$$

synthsize

$$\int_0^L = \frac{1}{2} \begin{bmatrix} u_1 & u_2 & \cdots & u_5 \end{bmatrix} \begin{bmatrix} u_1 & u_2 & \cdots & u_5 \end{bmatrix}$$

Dividing Region

nodal points

divide [0, L] into four small regions small region size h = L/4

$$x_1 = 0, x_2 = h, x_3 = 2h, x_4 = 3h, x_5 = L$$

Piecewise Linear Approximation

Piecewise Linear Approximation

Piecewise Linear Approximation function u(x) in small region $[x_i, x_j]$

$$u(x) = u_i N_{i,j}(x) + u_j N_{j,i}(x)$$

$$u(x_i) = u_i N_{i,j}(x_i) + u_j N_{j,i}(x_i) = u_i \cdot 1 + u_j \cdot 0 = u_i$$

$$u(x_j) = u_i N_{i,j}(x_j) + u_j N_{j,i}(x_j) = u_i \cdot 0 + u_j \cdot 1 = u_j$$

Piecewise Linear Approximation in small region $[x_i, x_j]$

$$egin{aligned} N_{i,j}(x) &= rac{x_j - x}{h}, & N_{j,i}(x) &= rac{x - x_i}{h}, \ N_{i,j}'(x) &= rac{-1}{h}, & N_{j,i}'(x) &= rac{1}{h} \end{aligned}$$

derivative $\partial u/\partial x$ in small region $[x_i, x_j]$

$$\frac{\partial u}{\partial x} = u_i N'_{i,j}(x) + u_j N'_{j,i}(x)$$
$$= u_i \frac{-1}{h} + u_j \frac{1}{h}$$
$$= \frac{-u_i + u_j}{h}$$

Piecewise Linear Approximation

assume Young's modulus E is constant

$$\int_{x_i}^{x_j} \frac{1}{2} EA\left(\frac{\partial u}{\partial x}\right)^2 dx$$

$$= \int_{x_i}^{x_j} \frac{1}{2} EA\left(\frac{-u_i + u_j}{h}\right)^2 dx$$

$$= \frac{1}{2} \frac{E}{h^2} \left(-u_i + u_j\right)^2 \int_{x_i}^{x_j} A dx$$

$$= \frac{1}{2} \begin{bmatrix} u_i & u_j \end{bmatrix} \frac{E}{h^2} \begin{bmatrix} V_{i,j} & -V_{i,j} \\ -V_{i,j} & V_{i,j} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix}$$

Piecewise Linear Approximation

note

$$V_{i,j} = \int_{x_i}^{x_j} A \,\mathrm{d}x$$

represents volume in small region $[x_i, x_j]$

assume Young's modulus E and cross-sectional area A are constant

$$\int_{x_i}^{x_j} \frac{1}{2} EA\left(\frac{\partial u}{\partial x}\right)^2 dx = \frac{1}{2} \begin{bmatrix} u_i & u_j \end{bmatrix} \frac{EA}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix}$$

Synthesizing

nodal displacement vector

$$oldsymbol{u}_{\mathrm{N}}=\left[egin{array}{c} u_1\ u_2\ dots\ dots\$$

describes soft robot deformation

Synthesizing

assume E and A are constant

$$U = \frac{1}{2} \begin{bmatrix} u_1 & u_2 \end{bmatrix} \frac{EA}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
$$+ \frac{1}{2} \begin{bmatrix} u_2 & u_3 \end{bmatrix} \frac{EA}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix}$$
$$+ \cdots$$
$$+ \frac{1}{2} \begin{bmatrix} u_4 & u_5 \end{bmatrix} \frac{EA}{h} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_4 \\ u_5 \end{bmatrix}$$

Synthesizing

strain potential energy

$$U = \frac{1}{2} \boldsymbol{u}_{\mathrm{N}}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{u}_{\mathrm{N}}$$

stiffness matrix

$$K = \frac{EA}{h} \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix}$$
Synthesizing

strain potential energy

$$U = \frac{1}{2} \boldsymbol{u}_{\mathrm{N}}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{u}_{\mathrm{N}}$$

stiffness matrix

$$\mathcal{K} = \frac{EA}{h} \begin{bmatrix} 1 & -1 & & \\ -1 & 1+1 & -1 & & \\ & -1 & 1+1 & -1 & \\ & & -1 & 1+1 & -1 \\ & & & -1 & 1 \end{bmatrix}$$

Synthesizing

strain potential energy

$$U = rac{1}{2} \boldsymbol{u}_{\mathrm{N}}^{\mathrm{T}} \boldsymbol{K} \boldsymbol{u}_{\mathrm{N}}$$

stiffness matrix

$$\mathcal{K} = \frac{EA}{h} \begin{bmatrix} 1 & -1 & & \\ -1 & 1+1 & -1 & & \\ & -1 & 1+1 & -1 & \\ & & -1 & 1+1 & -1 \\ & & & -1 & 1 \end{bmatrix}$$

Piecewise Linear Approximation

in small region $[x_i, x_j]$

$$u = u_i N_{i,j} + u_j N_{j,i}$$

$$\dot{u} = \dot{u}_i N_{i,j} + \dot{u}_j N_{j,i}$$

assume density ρ and cross-sectional area A are constant

$$\int_{x_i}^{x_j} \frac{1}{2} \rho A \dot{u}^2 \, \mathrm{d}x = \frac{1}{2} \rho A \begin{bmatrix} \dot{u}_i & \dot{u}_j \end{bmatrix} \begin{bmatrix} h/3 & h/6 \\ h/6 & h/3 \end{bmatrix} \begin{bmatrix} \dot{u}_i \\ \dot{u}_j \end{bmatrix}$$
$$= \frac{1}{2} \frac{\rho A h}{6} \begin{bmatrix} \dot{u}_i & \dot{u}_j \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \dot{u}_i \\ \dot{u}_j \end{bmatrix}$$

Synthesizing

kinetic energy

$$\mathcal{T}=rac{1}{2}\dot{oldsymbol{u}}_{\mathrm{N}}^{\mathrm{T}}\mathcal{M}\dot{oldsymbol{u}}_{\mathrm{N}}$$

inertia matrix

$$M = \frac{\rho A h}{6} \begin{bmatrix} 2 & 1 & & \\ 1 & 4 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 4 & 1 \\ & & & 1 & 2 \end{bmatrix}$$

Dynamic Equation energies

$$egin{aligned} U &= rac{1}{2} oldsymbol{u}_{\mathrm{N}}^{\mathrm{T}} oldsymbol{K} oldsymbol{u}_{\mathrm{N}} \ T &= rac{1}{2} \dot{oldsymbol{u}}_{\mathrm{N}}^{\mathrm{T}} oldsymbol{M} \dot{oldsymbol{u}}_{\mathrm{N}} \end{aligned}$$

work done by external forces

$$W = f^{\mathrm{T}} u_{\mathrm{N}}$$

constraints

$$R \stackrel{ riangle}{=} \boldsymbol{a}^{\mathrm{T}} \boldsymbol{u}_{\mathrm{N}} = 0$$

where $\boldsymbol{f} = [0, 0, 0, 0, f]^{\mathrm{T}}$ and $\boldsymbol{a} = [1, 0, 0, 0, 0]^{\mathrm{T}}$

Dynamic Equation

Lagrangian

$$\mathcal{L} = \mathcal{T} - \mathcal{U} + \mathcal{W} + \lambda_{a} oldsymbol{a}^{\mathrm{T}} oldsymbol{u}_{\mathrm{N}}$$

 λ_a : Lagrange multiplier

Lagrange equations

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{u}_{\mathrm{N}}} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{u}}_{\mathrm{N}}} = \boldsymbol{0}$$
$$-K\boldsymbol{u}_{\mathrm{N}} + \boldsymbol{f} + \lambda_{\boldsymbol{a}}\boldsymbol{a} - M\ddot{\boldsymbol{u}}_{\mathrm{N}} = \boldsymbol{0}$$

Dynamic Equation

constraint stabilization method

$$\ddot{R} + 2\alpha \dot{R} + \alpha^2 R = 0$$
$$-\boldsymbol{a}^{\mathrm{T}} \ddot{\boldsymbol{u}}_{\mathrm{N}} = 2\alpha \boldsymbol{a}^{\mathrm{T}} \dot{\boldsymbol{u}}_{\mathrm{N}} + \alpha^2 \boldsymbol{a}^{\mathrm{T}} \boldsymbol{u}_{\mathrm{N}}$$

canonical form of ODE

$$\dot{\boldsymbol{u}}_{\mathrm{N}} = \boldsymbol{v}_{\mathrm{N}}$$

 $M\dot{\boldsymbol{v}}_{\mathrm{N}} - \lambda_{\boldsymbol{a}}\boldsymbol{a} = -K\boldsymbol{u}_{\mathrm{N}} + \boldsymbol{f}$
 $-\boldsymbol{a}^{\mathrm{T}}\dot{\boldsymbol{v}}_{\mathrm{N}} = 2\alpha\boldsymbol{a}^{\mathrm{T}}\boldsymbol{v}_{\mathrm{N}} + \alpha^{2}\boldsymbol{a}^{\mathrm{T}}\boldsymbol{u}_{\mathrm{N}}$

Two/Three-dimensional Finite Element Method

one-dimensional deformation

extensional strain ε Young's modulus *E*

strain potential energy density

$$\frac{1}{2}E\varepsilon^2$$

two/three-dimensional deformation

extensional & shear strains \rightarrow strain vector ε Lamé's constants λ , $\mu \rightarrow$ elasticity matrix $\lambda I_{\lambda} + \mu I_{\mu}$ strain potential energy density $\frac{1}{2}\varepsilon^{\mathrm{T}}(\lambda I_{\lambda} + \mu I_{\mu})\varepsilon$

natural state moved and deformed state

displacement vector

$$u(x,y) = \left[\begin{array}{c} u(x,y) \\ v(x,y) \end{array}\right]$$

relative displacement at ${\rm Q}$

$$\boldsymbol{u}(\boldsymbol{x}+\boldsymbol{\delta},\boldsymbol{y})-\boldsymbol{u}(\boldsymbol{x},\boldsymbol{y})=\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}\boldsymbol{\delta}=\left[\begin{array}{c} \partial \boldsymbol{u}/\partial \boldsymbol{x}\\ \partial \boldsymbol{v}/\partial \boldsymbol{x}\end{array}\right]\boldsymbol{\delta}$$

relative displacement at $\ensuremath{\mathrm{R}}$

$$\boldsymbol{u}(x,y+\delta) - \boldsymbol{u}(x,y) = \frac{\partial \boldsymbol{u}}{\partial y}\delta = \begin{bmatrix} \frac{\partial \boldsymbol{u}}{\partial y} \\ \frac{\partial \boldsymbol{v}}{\partial y} \end{bmatrix}\delta$$

shear deformation

rotational motion

$$\frac{\partial u}{\partial x} = \text{extension along } x \text{-axis} \quad \frac{\partial u}{\partial y} = \text{shear} - \text{rotation}$$
$$\frac{\partial v}{\partial x} = \text{shear} + \text{rotation} \qquad \frac{\partial v}{\partial y} = \text{extension along } y \text{-axis}$$

Cauchy strain

$$\varepsilon_{xx} = \frac{\partial u}{\partial x}, \qquad \varepsilon_{yy} = \frac{\partial v}{\partial y}, \qquad 2\varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

 \downarrow

Strain potential energy density linear isotropic elastic material

$$rac{1}{2}oldsymbol{arepsilon}^{\mathrm{T}}(\lambda I_{\lambda}+\mu I_{\mu})oldsymbol{arepsilon}$$

where λ and μ are Lamé's constants and

$$I_\lambda = \left[egin{array}{cccc} 1 & 1 \ 1 & 1 \ \end{array}
ight], \quad I_\mu = \left[egin{array}{ccccc} 2 & \ & 2 \ & & 1 \end{array}
ight]$$

Lamé's constants λ and μ are related to Young's modulus *E* and Poisson's ratio ν :

$$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$$
$$\mu = \frac{E}{2(1+\nu)}$$

Tensile test provides Young's modulus E and Poisson's ratio ν .

Volume element

$$h\,\mathrm{d}S = h\,\mathrm{d}x\,\mathrm{d}y$$

Strain potential energy $U = \int_{S} \frac{1}{2} \varepsilon^{\mathrm{T}} (\lambda I_{\lambda} + \mu I_{\mu}) \varepsilon \ h \, \mathrm{d}S$

Volume element

$$h\,\mathrm{d}S = h\,\mathrm{d}x\,\mathrm{d}y$$

Strain potential energy
$$U = \int_{S} \frac{1}{2} \varepsilon^{\mathrm{T}} (\lambda I_{\lambda} + \mu I_{\mu}) \varepsilon \ h \, \mathrm{d}S$$

Kinetic energy

$$T = \int_{S} \frac{1}{2} \rho \; \dot{\boldsymbol{u}}^{\mathrm{T}} \dot{\boldsymbol{u}} \; h \, \mathrm{d}S$$

displacement vector

$$\boldsymbol{u}(x,y,z) = \begin{bmatrix} u(x,y,z) \\ v(x,y,z) \\ w(x,y,z) \end{bmatrix}$$

$$2 \cdot \text{shear in } yz\text{-plane} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}$$
$$2 \cdot \text{shear in } zx\text{-plane} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$$
$$2 \cdot \text{shear in } xy\text{-plane} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

Cauchy strain

$$\varepsilon_{xx} = \frac{\partial u}{\partial x} \quad \varepsilon_{yy} = \frac{\partial v}{\partial y} \quad \varepsilon_{zz} = \frac{\partial w}{\partial z}$$
$$2\varepsilon_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}$$
$$2\varepsilon_{zx} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$$
$$2\varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$$

Strain potential energy density linear isotropic elastic material

$$rac{1}{2}oldsymbol{arepsilon}^{\mathrm{T}}(\lambda I_{\lambda}+\mu I_{\mu})oldsymbol{arepsilon}$$

Volume element

$$\mathrm{d}V = \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$$

Strain potential energy $U = \int_{V} \frac{1}{2} \boldsymbol{\varepsilon}^{\mathrm{T}} (\lambda I_{\lambda} + \mu I_{\mu}) \boldsymbol{\varepsilon} \, \mathrm{d}V$

Volume element

$$\mathrm{d}V = \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$$

Strain potential energy $U = \int_{V} \frac{1}{2} \boldsymbol{\varepsilon}^{\mathrm{T}} (\lambda I_{\lambda} + \mu I_{\mu}) \boldsymbol{\varepsilon} \, \mathrm{d}V$

Kinetic energy

$$T = \int_{V} \frac{1}{2} \rho \; \dot{\boldsymbol{u}}^{\mathrm{T}} \dot{\boldsymbol{u}} \; \mathrm{d}V$$

assume density ρ and thickness h are constants kinetic energy of $\triangle = \triangle P_i P_j P_k$

$$T_{i,j,k} = \int_{\Delta} \frac{1}{2} \rho \, \dot{\boldsymbol{u}}^{\mathrm{T}} \, \dot{\boldsymbol{u}} \, h \, \mathrm{d}S$$

= $\frac{1}{2} \begin{bmatrix} \dot{\boldsymbol{u}}_{i}^{\mathrm{T}} & \dot{\boldsymbol{u}}_{j}^{\mathrm{T}} & \dot{\boldsymbol{u}}_{k}^{\mathrm{T}} \end{bmatrix} \frac{\rho h \Delta}{12} \begin{bmatrix} 2l_{2\times2} & l_{2\times2} & l_{2\times2} \\ l_{2\times2} & 2l_{2\times2} & l_{2\times2} \\ l_{2\times2} & l_{2\times2} & 2l_{2\times2} \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{u}}_{i} \\ \dot{\boldsymbol{u}}_{j} \\ \dot{\boldsymbol{u}}_{k} \end{bmatrix}$

 $I_{2\times2}$: 2 × 2 identity matrix (see Finite_Element_Approximation.pdf for details)

Partial inertia matrix $M_{i,j,k} = \frac{\rho h \triangle}{12} \begin{bmatrix} 2l_{2\times2} & l_{2\times2} & l_{2\times2} \\ l_{2\times2} & 2l_{2\times2} & l_{2\times2} \\ l_{2\times2} & l_{2\times2} & 2l_{2\times2} \end{bmatrix}$

assume ho h riangle / 12 is constantly equal to 1 partial inertia matrices

$$M_{1,2,4} = M_{2,3,5} = M_{5,4,2} = M_{6,5,3} = \begin{bmatrix} 2I_{2\times2} & I_{2\times2} & I_{2\times2} \\ I_{2\times2} & 2I_{2\times2} & I_{2\times2} \\ I_{2\times2} & I_{2\times2} & 2I_{2\times2} \end{bmatrix}$$

total kinetic energy

M: inertia matrix (6×6 block matrix)

$$M_{1,2,4} = \begin{bmatrix} (1,1) \text{ block } (1,2) \text{ block } (1,4) \text{ block } \\ \hline (2,1) \text{ block } (2,2) \text{ block } (2,4) \text{ block } \\ \hline (4,1) \text{ block } (4,2) \text{ block } (4,4) \text{ block } \end{bmatrix}$$

contribution of $M_{1,2,4}$ to M

Γ	$2I_{2\times 2}$	$I_{2\times 2}$	$I_{2\times 2}$	-
	$I_{2\times 2}$	$2I_{2\times 2}$	$I_{2\times 2}$	
-				
	$I_{2\times 2}$	$I_{2\times 2}$	$2I_{2\times 2}$	

$$M_{5,4,2} = \begin{bmatrix} (5,5) \text{ block} & (5,4) \text{ block} & (5,2) \text{ block} \\ \hline (4,5) \text{ block} & (4,4) \text{ block} & (4,2) \text{ block} \\ \hline (2,5) \text{ block} & (2,4) \text{ block} & (2,2) \text{ block} \end{bmatrix}$$

contribution of $M_{5,4,2}$ to M

-				-
	$2I_{2\times 2}$	$I_{2\times 2}$	$I_{2\times 2}$	
	$I_{2\times 2}$	$2I_{2\times 2}$	$I_{2\times 2}$	
	$I_{2\times 2}$	$I_{2\times 2}$	$2I_{2\times 2}$	

•

inertia matrix

$$M = M_{1,2,4} \oplus M_{2,3,5} \oplus M_{5,4,2} \oplus M_{6,5,3}$$

$$= \begin{bmatrix} 2I_{2\times2} & I_{2\times2} & I_{2\times2} \\ I_{2\times2} & 6I_{2\times2} & I_{2\times2} & 2I_{2\times2} & 2I_{2\times2} \\ I_{2\times2} & 4I_{2\times2} & 2I_{2\times2} & I_{2\times2} \\ I_{2\times2} & 2I_{2\times2} & 4I_{2\times2} & I_{2\times2} \\ I_{2\times2} & 2I_{2\times2} & I_{2\times2} & I_{2\times2} \\ I_{2\times2} & 2I_{2\times2} & I_{2\times2} & I_{2\times2} \\ I_{2\times2} & I_{2\times2} & I_{2\times2} & 2I_{2\times2} \end{bmatrix}$$

٠
Two-dimensional FEM

assume λ , μ and h are constants strain potential energy stored in $\Delta = \Delta P_i P_i P_k$

$$egin{aligned} &U_{i,j,k} = \int_{ riangle} rac{1}{2} \, oldsymbol{arepsilon}^{\mathrm{T}} (\lambda I_{\lambda} + \mu I_{\mu}) oldsymbol{arepsilon} \, h \, \mathrm{d}S \ &= rac{1}{2} oldsymbol{u}_{i,j,k}^{\mathrm{T}} \, (\lambda J_{\lambda}^{i,j,k} + \mu J_{\mu}^{i,j,k}) \, oldsymbol{u}_{i,j,k} \end{aligned}$$

where

$$oldsymbol{u}_{i,j,k} = \left[egin{array}{c} oldsymbol{u}_i \ oldsymbol{u}_j \ oldsymbol{u}_k \end{array}
ight]$$

(see Finite_Element_Approximation.pdf for details)

Two-dimensional FEM

$$oldsymbol{a} = rac{1}{2 riangle} \left[egin{array}{c} y_j - y_k \ y_k - y_i \ y_i - y_j \end{array}
ight], \qquad oldsymbol{b} = rac{-1}{2 riangle} \left[egin{array}{c} x_j - x_k \ x_k - x_i \ x_i - x_j \end{array}
ight]$$

$$egin{array}{ll} \mathcal{H}_{\lambda} = \left[egin{array}{ccc} m{aa}^{\mathrm{T}} & m{ab}^{\mathrm{T}} \ m{ba}^{\mathrm{T}} & m{bb}^{\mathrm{T}} \end{array}
ight] higtriangle \ \mathcal{H}_{\mu} = \left[egin{array}{ccc} 2m{aa}^{\mathrm{T}} + m{bb}^{\mathrm{T}} & m{ba}^{\mathrm{T}} \ m{ab}^{\mathrm{T}} & 2m{bb}^{\mathrm{T}} + m{aa}^{\mathrm{T}} \end{array}
ight] higtriangle \end{array}$$

1, 4, 2, 5, 3, 6 rows and columns of H_{λ} , $H_{\mu} \rightarrow$ 1, 2, 3, 4, 5, 6 rows and columns of $J_{\lambda}^{i,j,k}$, $J_{\mu}^{i,j,k}$

Example (stiffness matrix) assume h = 2 $P_1P_2P_4$: $\boldsymbol{a} = [-1, 1, 0]^T$ and $\boldsymbol{b} = [-1, 0, 1]^T$ $H_{\lambda} = egin{bmatrix} 1 & -1 & 0 & 1 & 0 & -1 \ -1 & 1 & 0 & -1 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 & 0 \ \hline 1 & -1 & 0 & 1 & 0 & -1 \ 0 & 0 & 0 & 0 & 0 & 0 \ -1 & 1 & 0 & -1 & 0 & 1 \ \end{bmatrix}$

Example (stiffness matrix) assume h = 2 $P_1P_2P_4$: $\boldsymbol{a} = [-1, 1, 0]^T$ and $\boldsymbol{b} = [-1, 0, 1]^T$ $H_{\mu} = egin{bmatrix} 3 & -2 & -1 & 1 & -1 & 0 \ -2 & 2 & 0 & 0 & 0 & 0 \ -1 & 0 & 1 & -1 & 1 & 0 \ \hline 1 & 0 & -1 & 3 & -1 & -2 \ -1 & 0 & 1 & -1 & 1 & 0 \ 0 & 0 & 0 & -2 & 0 & 2 \ \end{bmatrix}$

Example (stiffness matrix) assume h = 2 $P_1P_2P_4$: $\boldsymbol{a} = [-1, 1, 0]^T$ and $\boldsymbol{b} = [-1, 0, 1]^T$ $J_{\lambda}^{1,2,4} = \begin{bmatrix} 1 & 1 & -1 & 0 & 0 & -1 \\ 1 & 1 & -1 & 0 & 0 & -1 \\ \hline -1 & -1 & 1 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline -1 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$

Example (stiffness matrix) assume h = 2 $P_1P_2P_4$: $\boldsymbol{a} = [-1, 1, 0]^T$ and $\boldsymbol{b} = [-1, 0, 1]^T$ $J^{1,2,4}_{\mu} = \begin{bmatrix} 3 & 1 & -2 & -1 & -1 & 0 \\ 1 & 3 & 0 & -1 & -1 & -2 \\ \hline -2 & 0 & 2 & 0 & 0 & 0 \\ \hline -1 & -1 & 0 & 1 & 1 & 0 \\ \hline -1 & -1 & 0 & 1 & 1 & 0 \\ 0 & -2 & 0 & 0 & 0 & 2 \end{bmatrix}$

Example (stiffness matrix) connection matrix

Shinichi

$J_\lambda = J_\lambda^{1,2,4} \oplus J_\lambda^{2,3,5} \oplus J_\lambda^{5,4,2} \oplus J_\lambda^{6,5,3}$												
	1	1	-1	0			0	-1				
=	1	1	-1	0			0	-1				
	-1	-1	2	1	-1	0	0	1	0	-1		
	0	0	1	2	-1	0	1	0	-1	-2		
			-1	-1	1	0			0	1	0	
			0	0	0	1			1	0	-1	_
	0	0	0	1			1	0	-1	-1		
	-1	-1	1	0			0	1	0	0		
			0	-1	0	1	-1	0	2	1	-1	_
			-1	-2	1	0	-1	0	1	2	0	
		utu Di			0	-1			-1	0	1	

Example (stiffness matrix) connection matrix

Shinichi

$J_{\mu} = J_{\mu}^{1,2,4} \oplus J_{\mu}^{2,3,5} \oplus J_{\mu}^{5,4,2} \oplus J_{\mu}^{6,5,3}$												
	3	1	-2	-1			-1	0				
	1	3	0	-1			-1	-2				
	-2	0	6	1	-2	-1	0	1	-2	-1		
	-1	-1	1	6	0	-1	1	0	-1	-4		
			-2	0	3	0			0	1	-1	_
			-1	-1	0	3			1	0	0	_
	-1	-1	0	1			3	0	-2	0		
	0	-2	1	0			0	3	-1	-1		
			-2	-1	0	1	-2	-1	6	1	-2	
			-1	-4	1	0	0	-1	1	6	-1	_
					-1	0			-2	-1	3	
Hirai	(Dept Roh	otics Rits	imeikan I	M	echanics of	Soft Bodi	95				71 /	99

Example (stiffness matrix)

stiffness matrix

$$\mathbf{K} = \lambda \mathbf{J}_{\lambda} + \mu \mathbf{J}_{\mu}$$

 $\begin{array}{lll} \lambda, \ \mu & \mbox{material-specific} \\ J_{\lambda}, \ J_{\mu} & \mbox{geometric} \end{array}$

strain potential energy

$$U=rac{1}{2}oldsymbol{u}_{\mathrm{N}}^{\mathrm{T}}$$
 K $oldsymbol{u}_{\mathrm{N}}$

Statics

Variatoinal priciple in statics

minimize
$$I = U - W = \frac{1}{2} \boldsymbol{u}_{\mathrm{N}}^{\mathrm{T}} \, \boldsymbol{K} \, \boldsymbol{u}_{\mathrm{N}} - \boldsymbol{f} \boldsymbol{u}_{\mathrm{N}}$$

subject to $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}_{\mathrm{N}} = \boldsymbol{b}$

Intorducing a set of Lagrange multipliers

Statics

$$\frac{\partial l'}{\partial \boldsymbol{u}_{\mathrm{N}}} = \boldsymbol{K} \boldsymbol{u}_{\mathrm{N}} - \boldsymbol{f} - \boldsymbol{A} \boldsymbol{\lambda} = \boldsymbol{0}$$
$$\frac{\partial l'}{\partial \boldsymbol{\lambda}} = -(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}_{\mathrm{N}} - \boldsymbol{b}) = \boldsymbol{0}$$
$$\Downarrow$$

Linear equation

$$\left[egin{array}{cc} \mathcal{K} & -\mathcal{A} \ -\mathcal{A}^{\mathrm{T}} \end{array}
ight] \left[egin{array}{cc} m{u}_{\mathrm{N}} \ m{\lambda} \end{array}
ight] = \left[egin{array}{cc} m{f} \ -m{b} \end{array}
ight]$$

Sample program 'get_started.m'. $points = \begin{bmatrix} 0 & 1 & 2 & 3 & 0 & 1 & \cdots & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 1 & \cdots & 3 & 3 \end{bmatrix}$


```
npoints = size(points,2);
ntriangles = size(triangles,1);
thickness = 1;
elastic = Body(npoints, points, ntriangles, triangles, triangles);
Variable 'elastic' represents the rectangle body.
```

Defining elatic property to calculate stiffness matrix.

% E = 0.1 MPa; \nu = 0.48; rho = 1 g/cm² Young = 1.0*1e+6; nu = 0.48; density = 1.00; [lambda, mu] = Lame_constants(Young, nu); elastic = elastic.mechanical_parameters(density

% stiffness matrix
elastic = elastic.calculate_stiffness_matrix;
K = elastic.Stiffness_Matrix;

Bottom face is fixed to floor. Edge ${\rm P}_{14}{\rm P}_{15}$ is pulled up / pushed down. ${\pmb {\cal A}}^{\rm T}{\pmb u}_{\rm N}={\pmb b}$

b = [0;0;0;0;0;0;0;0;0;dy;0;dy];

Building and solving linear equation

mat = [K, -A; -A', zeros(nconstraints,nconstra: vec = [zeros(2*npoints,1); -b]; sol = mat \ vec; un = sol(1:2*npoints);

Dynamics Lagrangian

$$\mathcal{L}(\boldsymbol{u}_{\mathrm{N}}, \dot{\boldsymbol{u}}_{\mathrm{N}}) = T - U + W + \boldsymbol{\lambda}^{\mathrm{T}}\boldsymbol{R}$$

= $\frac{1}{2}\dot{\boldsymbol{u}}_{\mathrm{N}}^{\mathrm{T}} \boldsymbol{M} \, \dot{\boldsymbol{u}}_{\mathrm{N}} - \frac{1}{2}\boldsymbol{u}_{\mathrm{N}}^{\mathrm{T}} \, \boldsymbol{K} \, \boldsymbol{u}_{\mathrm{N}} + \boldsymbol{f}^{\mathrm{T}} \boldsymbol{u}_{\mathrm{N}} + \boldsymbol{\lambda}^{\mathrm{T}} (\boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}_{\mathrm{N}} - \boldsymbol{b}(t))$

Partial derivatives

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{u}_{\mathrm{N}}} = -\boldsymbol{K}\boldsymbol{u}_{\mathrm{N}} + \boldsymbol{f} + \boldsymbol{A}\boldsymbol{\lambda}, \qquad \frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{u}}_{\mathrm{N}}} = \boldsymbol{M}\dot{\boldsymbol{u}}_{\mathrm{N}}$$

Lagrange equation of motion

$$-Ku_{\mathrm{N}}+f+A\lambda-M\ddot{u}_{\mathrm{N}}=0$$

Dynamics

Equation for stabilizing constraint $A^{\mathrm{T}}\boldsymbol{u}_{\mathrm{N}} - \boldsymbol{b}(t) = \boldsymbol{0}$ $(A^{\mathrm{T}}\ddot{\boldsymbol{u}}_{\mathrm{N}} - \ddot{\boldsymbol{b}}(t)) + 2\alpha(A^{\mathrm{T}}\dot{\boldsymbol{u}}_{\mathrm{N}} - \dot{\boldsymbol{b}}(t)) + \alpha^{2}(A^{\mathrm{T}}\boldsymbol{u}_{\mathrm{N}} - \boldsymbol{b}(t)) = \boldsymbol{0}$

Canonical form

$$\left[egin{array}{cc} M & -A \ -A^{\mathrm{T}} \end{array}
ight] \left[egin{array}{cc} \dot{oldsymbol{v}}_{\mathrm{N}} \ oldsymbol{\lambda} \end{array}
ight] = \left[egin{array}{cc} -\mathcal{K}oldsymbol{u}_{\mathrm{N}} + oldsymbol{f} \ \mathcal{C}(oldsymbol{u}_{\mathrm{N}},oldsymbol{v}_{\mathrm{N}}) \end{array}
ight]$$

where

$$\boldsymbol{C}(\boldsymbol{u}_{\mathrm{N}},\boldsymbol{v}_{\mathrm{N}}) = -\ddot{\boldsymbol{b}}(t) + 2\alpha(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{v}_{\mathrm{N}} - \dot{\boldsymbol{b}}(t)) + \alpha^{2}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{u}_{\mathrm{N}} - \boldsymbol{b}(t))$$

Given $\boldsymbol{u}_{N}, \, \boldsymbol{v}_{N}$, we can calcultae time-derivatives $\boldsymbol{u}_{N}, \, \boldsymbol{v}_{N}$.

Example (dynamic simulation) two-dimensional square soft body of width wYoung's modulus E, viscous modulus c, density ρ divide square into $3 \times 3 \times 2$ triangles

Example (dynamic simulation)

jump simulation movie

Example (dynamic simulation)

jump simulation movie

Example (dynamic simulation)

- motion and deformation can be simulated properly
- results depend on mesh and include artifacts
- finer mesh yields better result but needs more computation time

energies in integral forms potential energy

$$U = \int (\text{potential energy density}) \cdot (\text{volume element})$$

kinetic energy

$$\mathcal{T} = \int (\mathsf{kinetic energy density}) \cdot (\mathsf{volume element})$$

one-dimensional deformation extensional strain ε Young's modulus E $\frac{\frac{1}{2}E\varepsilon^2}{\frac{1}{2}\rho\dot{\varepsilon}^2}$ strain potential energy density kinetic energy density A dxvolume element

two/three-dimensional deformation

strain vector ε (extensional & shear strains)elasticity matrix $\lambda I_{\lambda} + \mu I_{\mu}$ (Lamé's constants λ, μ)strain potential energy density $\frac{1}{2} \varepsilon^{\mathrm{T}} (\lambda I_{\lambda} + \mu I_{\mu}) \varepsilon$ kinetic energy density $\frac{1}{2} \rho \dot{\varepsilon}^{\mathrm{T}} \dot{\varepsilon}$ volume element $h \,\mathrm{d}S$ or $\mathrm{d}V$

strain potential energy quadratic form with respect to $u_{\rm N}$

$$U = rac{1}{2} oldsymbol{u}_{ ext{N}}^{ ext{T}} oldsymbol{K} oldsymbol{u}_{ ext{N}}$$
 (K: stiffness matrix)

kinetic energy quadratic form with respect to $\dot{u}_{\rm N}$

$${\cal T}=rac{1}{2}\dot{oldsymbol{u}}_{
m N}^{
m T}\,{oldsymbol{M}}\,\dot{oldsymbol{u}}_{
m N}$$
 $({oldsymbol{M}}:$ inertia matrix)

Advances

Green strain is invariant with respect to rotation whereas Cauchy strain is not

Handouts

Text and sample programs (MATLAB) are available at: https://www.hirailab.com/edu/common/ soft_robotics/Physics_Soft_Bodies.html

Report (1/3)

Q1 A soft robot moves inside a smooth rigid tube. The robot body consists of a cylindrical soft tube (length L, outer radius R, inner radius r) and thin rigid plates attached to the both ends of the tube. Young's modulus of the tube materical is given by E. Air pressure P is applied inside the tube through its one end. Assume that the robot extends along its central axis alone and radial deformation is negligible. Let L = 100 mm, R = 10 mm, r = 6 mm, E = 1.0 MPa, and P = 0.10 MPa, estimate the extentional deformation of the robot

Report (2/3)

Q2 Show inertia matrix M and connection matrices J_{λ} , J_{μ} of the two-dimensional body below. Length of orthogonal sides of all isosceles right triangles is 1. Thickness of the two-dimensional body is h = 2 and its density is $\rho = 12$.

Report (3/3)

Submit your report in PDF format through manaba+R. Other format files are not accepted. due :00:10 am, November 8 (Friday). Either English or 日本語 is accepted.